Oxidative dissolution of silver nanoparticles by synthetic manganese dioxide investigated by synchrotron X-ray absorption spectroscopy

  • Bruce A. ManningEmail author
  • Sushil R. Kanel
  • Edgar Guzman
  • Seth W. Brittle
  • Ioana E. Pavel
Research Paper


Silver nanoparticles (AgNPs) are widely used in a variety of industrial and consumer applications and the disposal AgNP-containing materials is a potential source of environmental contamination. This study investigated the reaction of AgNPs with synthetic birnessite (δ-MnO2), a naturally-occurring MnO2 soil mineral shown in previous studies to oxidize both organic and inorganic dissolved species. The AgNPs used in this study ranged in size from 5 to 25 nm with an average particle diameter of 15.6 nm. Batch and kinetic reactions of MnO2-treated AgNP suspensions were studied by detecting AgNP oxidation to Ag+ using a combination of UV-Vis and microwave plasma atomic emission (MP-AES) spectrometries. Synchrotron K-edge X-ray absorption spectroscopy (XANES and EXAFS) was used to investigate the Ag oxidation state and structural characteristics of the reaction products. Oxidation of AgNP by MnO2 was detected in batch reactions showing an initial fast oxidation of AgNP to Ag+ (0–10 min) followed by a slower reaction (> 10 min) where Ag+ was removed by adsorption on MnO2 surfaces. XANES results confirmed that total AgNP oxidation by MnO2 occurred after 48 h when the Mn:Ag mole ratio treatment exceeded 5:1. The final AgNP oxidation product determined by EXAFS was Ag+ ion bound as a AgO4 tetrahedral structure in MnO2 interlayer cation exchange sites with Ag-O and Ag-Mn inter-atomic distances of 2.28 (± 0.02) and 3.88 (± 0.09) Å, respectively. This structure is in agreement with previous EXAFS studies of naturally-occurring Ag-bearing MnO2 mineral samples and represents one of many possible Ag+ binding sites on soil mineral surfaces.


Silver nanoparticles AgNP Manganese dioxide Oxidation X-ray absorption spectroscopy Environmental contamination 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Adegboyega NF, Sharma VK, Siskova K, Zbořil R, Sohn M, Schultz BJ, Banerjee S (2013) Interactions of aqueous ag+ with fulvic acids: mechanisms of silver nanoparticle formation and investigation of stability. Environ Sci Technol 47(2):757–764CrossRefGoogle Scholar
  2. Banerjee M, Sharma S, Chattopadhyay A, Ghosh SS (2011) Enhanced antibacterial activity of bimetallic gold-silver core-shell nanoparticles at low silver concentration. Nanoscale 3:5120–5125CrossRefGoogle Scholar
  3. Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42:4133–4139CrossRefGoogle Scholar
  4. Brittle SW, Foose DP, O’Neil KA, Sikon JM, Johnson JK, Stahler AC, Ryan J, Higgins SR, Sizemore IE (2018) A Raman-based imaging method for characterizing the molecular adsorption and spatial distribution of silver nanoparticles on hydrated mineral surfaces. Environ Sci Technol 52(5):2854–2862. CrossRefGoogle Scholar
  5. Choi O, Hu ZQ (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42:4583–4588CrossRefGoogle Scholar
  6. Cornelis G, Doolette C, Thomas M, McLaughlin MJ, Kirby JK, Beak DG, Chittleborough D (2012) Retention and dissolution of engineered silver nanoparticles in natural soils. Soil Sci Soc Am J 76:891–902. CrossRefGoogle Scholar
  7. Cornelis G, Pang L, Doolette C, Kirby J, McLaughlin M (2013) Transport of silver nanoparticles in saturated columns of natural soils. Sci Total Environ 463:120–130CrossRefGoogle Scholar
  8. Cotton AF, Wilkinson G (1988) Advanced inorganic chemistry, 5th edn. Wiley-Interscience, New York, pp 939–945Google Scholar
  9. Desai R, Mankad V, Gupta SK, Jha PK (2012) Size distribution of silver nanoparticles: UV-visible spectroscopic assessment. Nanoscience and Nanotechnology Letters (4):30–34CrossRefGoogle Scholar
  10. Dorney KM, Baker JD, Edwards ML, Kanel SR, O’Malley M, Pavel Sizemore IE (2014) Tangential flow filtration of colloidal silver nanoparticles: a “green” laboratory experiment for chemistry and engineering students. J Chem Educ 2014(91):1044–1049CrossRefGoogle Scholar
  11. Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37:517–531CrossRefGoogle Scholar
  12. Fan C, Li Q, Chu B, Lu G, Gao Y, Xu L (2018) Silver binding in argentiferous manganese oxide minerals investigated by synchrotron radiation X-ray absorption spectroscopy. Phys Chem Miner 45:679–693. CrossRefGoogle Scholar
  13. Fendorf SE, Zasoski RJ (1992) Chromium(III) oxidation by delta-MnO2. Environ Sci Technol 26:79–85CrossRefGoogle Scholar
  14. Feng X, Wang P, Shi Z, Kwon K, Zhao H, Yin H, Lin Z, Zhu M, Liang X, Liu F, Sparks DL (2018) A quantitative model for the coupled kinetics of arsenic adsorption/desorption and oxidation on manganese oxides. Environ Sci Technol Lett 5(3):175–180CrossRefGoogle Scholar
  15. Flory J, Kanel SR, Racz L, Impellitteri A, Rendahandi GS, Goltz MN (2013) Influence of pH on the transport of silver nanoparticles in saturated porous media: laboratory experiments and modeling. J Nanopart Res 15:1484. CrossRefGoogle Scholar
  16. Niessner FF (ed) (2010) Nanoparticles in the water cycle: properties. Springer, Analysis and Environmental RelevanceGoogle Scholar
  17. Gao J, Powers K, Wang Y, Zhou H, Roberts SM, Moudgil BM, Koopman B, Barber DS (2012) Influence of Suwannee River humic acid on particle properties and toxicity of silver nanoparticles. Chemosphere 89(1):96–101CrossRefGoogle Scholar
  18. He D, Ikeda-Ohno A, Boland DD, Waite DT (2013) Synthesis and characterization of antibacterial silver nanoparticle-impregnated rice husks and rice husk ash. Environ Sci Technol 47:5276–5284CrossRefGoogle Scholar
  19. He D, Kacopieros M, Ikeda-Ohno A, Waite DT (2014) Optimizing the design and synthesis of supported silver nanoparticles for low cost water disinfection. Environ Sci Technol 48:12320–12326CrossRefGoogle Scholar
  20. Holt KB, Bard AJ (2005) Interaction of silver(I) ions with the respiratory chain of Escherichia coli: an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+. Biochemistry 44:13214–13223CrossRefGoogle Scholar
  21. Hooda PS (2010) Trace elements in soils, John Wiley & Sons, Inc pp 515-549Google Scholar
  22. Johnson EA, Post JE (2006) Water in the interlayer region of birnessite: importance in cation exchange and structural stability. Am Mineral 91(4):609–618CrossRefGoogle Scholar
  23. Jones KC, Davies BE, Peterson PJ (1986) Silver in Welsh soils: physical and chemical distribution studies. Geoderma 37:157–174CrossRefGoogle Scholar
  24. Kanel S, Flory J, Meyerhoefer A, Fraley JL, Sizemore IE, Goltz MN (2015) Influence of natural organic matter on fate and transport of silver nanoparticles in saturated porous media: laboratory experiments and modeling. J Nanopart Res 17:154–166CrossRefGoogle Scholar
  25. Kittler S, Greulich C, Diendorf J, Koller M, Epple M (2010) Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem Mater 22:4548–4554CrossRefGoogle Scholar
  26. Klausen J, Haderlein SB, Schwarzenbach RP (1997) Oxidation of substituted anilines by aqueous MnO2: effect of cosolutes on initial and quasi-steady-state kinetics. Environ Sci Technol 31:2642–2649CrossRefGoogle Scholar
  27. Kuhn M, Ivleva NP, Klitzke S, Niessner R, Baumann T (2015) Investigation of coatings of natural organic matter on silver nanoparticles under environmentally relevant conditions by surface-enhanced Raman scattering. Sci Total Environ 535:122–130CrossRefGoogle Scholar
  28. Levard C, MattHotze E, Lowry GV, Brown GE Jr (2012) Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ Sci Technol 46:6900–6914CrossRefGoogle Scholar
  29. Li X, Lenhart J, Walker H (2010) Dissolution-accompanied aggregation kinetics of silver nanoparticles. Langmuir 26:16690–16698CrossRefGoogle Scholar
  30. Liu J, Hurt RH (2010) Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol 44(6):2169–2175CrossRefGoogle Scholar
  31. Lowry GV, Espinasse BP, Badireddy AR, Richardson CJ, Reinsch BC, Bryant LD, Bone AJ, Deonarine A, Chae S, Therezien M, Colman BP, Hsu-Kim H, Bernhardt ES, Matson CW, Wiesner MR (2012) Long-term transformation and fate of manufactured Ag nanoparticles in a simulated large scale freshwater emergent wetland. Environ Sci Technol 46(13):7027–7036. CrossRefGoogle Scholar
  32. Mahapatra I, Clark J, Dobson P, Owen R, Lead J (2013) Potential environmental implications of nano-enabled medical applications: critical review. Environ Sci Process Impacts 15:123–144CrossRefGoogle Scholar
  33. Mahdi KNM, Peters R, van der Ploeg M, Ritsema C, Geissen V (2018) Tracking the transport of silver nanoparticles in soil: a saturated column experiment. Water Air Soil Pollut 229:334–347. CrossRefGoogle Scholar
  34. Manning BA, Fendorf SE, Suarez DL (2002) Arsenic(III) oxidation and arsenic(V) adsorption reactions on synthetic birnessite. Environ Sci Technol 36:976–981CrossRefGoogle Scholar
  35. McArdell CS, Stone AT, Tian J (1998) Reaction of EDTA and related aminocarboxylate chelating agents with CoIIIOOH (heterogenite) and MnIIIOOH (manganite). Environ Sci Technol 32:2923–2930CrossRefGoogle Scholar
  36. McKenzie RM (1989) Manganese oxides and hydroxides. In: Dixon JB, Weed SB (eds) Minerals in soil environments, SSSA book series number 1, 2nd edn. Soil Science Society of America, Madison, pp 439–465Google Scholar
  37. Mittelman AM, Taghavy A, Wang Y, Abriola LM, Pennell KD (2013) Influence of dissolved oxygen on silver nanoparticle mobility and dissolution in water-saturated quartz sand. J Nanopart Res 15:1765CrossRefGoogle Scholar
  38. Molleman B, Hiemstra T (2015) Surface structure of silver nanoparticles as a model for understanding the oxidative dissolution of silver ions. Langmuir 31(49):13361–13372. CrossRefGoogle Scholar
  39. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353CrossRefGoogle Scholar
  40. Morris J, Willis J (2007) U.S. Environmental Protection Agency Nanotechnology White Paper. U.S. Environmental Protection Agency, Washington, DC February, 2007Google Scholar
  41. Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17(5):372–386CrossRefGoogle Scholar
  42. Newville M (2001) IFEFFIT: interactive XAFS analysis and FEFF fitting. J Synchrotron Radiat 8:324–332Google Scholar
  43. Padmos DJ, Boudreau R, Weaver DF, Zhang P (2015) Impact of protecting ligands on surface structure and antibacterial activity of silver nanoparticles. Langmuir 31:3745–3752. CrossRefGoogle Scholar
  44. Peretyazhko TS, Zhang Q, Colvin VL (2014) Size-controlled dissolution of silver nanoparticles at neutral and acidic pH conditions: kinetics and size changes. Environ Sci Technol 48(20):11954–11961. CrossRefGoogle Scholar
  45. Rehr JJ, Zabinsky SI, Albers RC (1992) High-order multiple scattering calculations of X-ray absorption fine structure. Phys Rev Lett 69:3397–3400CrossRefGoogle Scholar
  46. Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, Eliceiri KW (2017) ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 18:529. CrossRefGoogle Scholar
  47. Sagee O, Dror I, Brian Berkowit B (2012) Transport of silver nanoparticles (AgNPs) in soil. Chemosphere 88:670–675. CrossRefGoogle Scholar
  48. Savio L, Giallombardo C, Vattuone L, Kokalji A, Rocca M (2008) Tuning the stoichiometry of surface oxide phases by step morphology: Ag(511) versus Ag(210). Phys Rev Lett 101(26):266103. CrossRefGoogle Scholar
  49. Scheckel KG, Luxton TP, El Badawy AM, Impellitteri CA, Tolaymat TM (2010) Synchrotron speciation of silver and zinc oxide nanoparticles aged in a kaolin suspension. Environ Sci Technol 44(4):1307–1312. CrossRefGoogle Scholar
  50. Seward TM, Henderson CMB, Charnock JM, Dobson BR (1996) An X-ray absorption (EXAFS) spectroscopic study of aquated Ag+ in hydrothermal solutions to 350 °C. Geochim Cosmochim Acta 60(13):2273–2282CrossRefGoogle Scholar
  51. Shen MH, Zhou XX, Yang XY, Chao JB, Liu R, Liu JF (2015) Exposure medium: key in identifying free Ag+ as the exclusive species of silver nanoparticles with acute toxicity to Daphnia magna. Sci Rep 5:9674CrossRefGoogle Scholar
  52. Shinagawa T, Ida Y, Mizuno K, Watase S, Watanabe M, Inaba M, Tasaka A, Izaki M (2013) Controllable growth orientation of Ag2O and Cu2O films by electrocrystallization from aqueous solutions. Cryst Growth & Design 13:52–58. CrossRefGoogle Scholar
  53. Silvester E, Manceau A, Drits VA (1997) Structure of synthetic monoclinic Na-rich birnessite and hexagonal birnessite: II. Results from chemical studies and EXAFS spectroscopy. Am Mineral 82(9–10):962–978CrossRefGoogle Scholar
  54. Solomon SD, Bahadory M, Jeyarajasingam AV, Rutkowsky SA, Boritz C, Mulfinger L (2007) Synthesis and study of silver nanoparticles. J Chem Educ 84:322–325CrossRefGoogle Scholar
  55. Stankus DP, Lohse SE, Hutchison JE, Nason JA (2011) Interactions between natural organic matter and gold nanoparticles stabilized with different organic capping agents. Environ Sci Technol 45:3238–3244CrossRefGoogle Scholar
  56. Stone AT (1987) Reductive dissolution of manganese(III/IV) oxides by substituted phenols. Environ Sci Technol 21:979–988CrossRefGoogle Scholar
  57. Tournassat C, Charlet L, Bosbach D, Manceau A (2002) Arsenic(III) oxidation by birnessiite and precipitation of manganese arsenate. Environ Sci Technol 36(3):493–500CrossRefGoogle Scholar
  58. Trefry JC, Monahan JL, Meyerhoefer AJ, Markopolous MM, Arnold ZS, Wooley DP, Pavel IE (2010) Size selection and concentration of silver nanoparticles by tangential flow ultrafiltration for SERs-based biosensors. J Am Chem Soc 132:10970–10972. CrossRefGoogle Scholar
  59. Ukrainczyk L, McBride MB (1993) Oxidation and dechlorination of chlorophenols in dilute aqueous suspensions of manganese oxides: reaction products. Environ Toxicol Chem 12:2015–2022CrossRefGoogle Scholar
  60. Wang D, Shin JY, Cheney MA, Sposito G, Spiro TG (1999) Manganese dioxide as a catalyst for oxygen-independent atrazine dealkylation. Environ Sci Technol 33:3160–3165CrossRefGoogle Scholar
  61. Webb SM (2005) SIXPACK: a graphical user interface for XAS analysis using IFEFFIT. Phys Scr T115:1011–1014CrossRefGoogle Scholar
  62. Xiu ZM, Zhang QB, Puppala HL, Colvin VL, Alvarez PJJ (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12(8):4271–4275CrossRefGoogle Scholar
  63. Yamamoto T, Takenaka S, Tanaka T, Baba T (2009) Stability of silver cluster in zeolite A and Y catalysts. J Phys Conf Ser 190:012171. CrossRefGoogle Scholar
  64. Yang XC, Dubiel M, Brunsch S, Hofmeister H (2003) X-ray absorption spectroscopy analysis of formation and structure of Ag nanoparticles in soda-lime silicate glass. J Non-Crystalline Solids 328:123–136CrossRefGoogle Scholar
  65. Zhang X, Miao W, Li C, Sun X, Wang K, Yanwei Ma Y (2015) Microwave-assisted rapid synthesis of birnessite-type MnO2 nanoparticles for high performance supercapacitor applications. Mater Res Bull 71:111–115. CrossRefGoogle Scholar
  66. Huynh K, Chen K (2011) Aggregation kinetics of citrate and polyvinylpyrrolidone coated silver nanoparticles in monovalent and divalent electrolyte solutions. Environ Sci Technol 45:5564–5571CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Bruce A. Manning
    • 1
    Email author
  • Sushil R. Kanel
    • 2
  • Edgar Guzman
    • 1
  • Seth W. Brittle
    • 2
  • Ioana E. Pavel
    • 2
  1. 1.Department of Chemistry & BiochemistrySan Francisco State UniversitySan FranciscoUSA
  2. 2.Department of ChemistryWright State UniversityDaytonUSA

Personalised recommendations