Structural, electronic and magnetic properties of bimetallic PdCo nanoparticles with/without metal oxide support and their interactions with nitric oxide (NO): a first principle (ab initio) material modelling study

  • Mikail AslanEmail author
Research Paper


We have applied ab initio electronic structure method to search minimum energetic structures of the supported and free bimetallic PdCo nanosized particles by using unbiased (surface modified) Birmingham Cluster Genetic Algorithm code, coupling with density functional theory including dispersion correction (Van der Waals). A detailed analysis of structural motifs and segregation effects of free and supported PdCo nanoparticles has been performed by investigating more than one thousand isomers. Alloying and oxide support effects on bimetallic PdCo in term of electronic, magnetic, structural, energetic and stability were also examined comprehensively by calculating pdos, lowden charge analyses, charge density (differences), second finite energies, mixing (formation) energies, dipole moments, ionization energies, electron affinities, chemical reactivity descriptors and HOMO-LUMO gaps. The optimized structures were characterized by vibrational, dipole moment, STM and XRD analyses for a comparison of further experimental studies. Furthermore, nitric oxide (NO) trapping capabilities of the free or supported nanoparticles and clean or strained (1%, 2%, 3%, 4% and 5%) MgO surfaces have been discussed.


Bimetallic nanoparticles Clusters Nanomaterials DFT First principle (ab initio) study Material modelling Transition metals Stability Magnetic properties Electronic properties Global minimum Genetic algorithm Scanning tunnelling microscopy Nitric oxide Functional nanoassemblies 



The calculations reported here have been performed on the following HPC facilities: the MidPlus Regional Centre of Excellence for Computational Science, Engineering and Mathematics, funded under EPSRC grant EP/K000128/1; and via membership of the UK’s HPC Materials Chemistry Consortium, which is funded by EPSRC (EP/L000202).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

11051_2019_4636_MOESM1_ESM.docx (6.7 mb)
ESM 1 (DOCX 6902 kb)
11051_2019_4636_MOESM2_ESM.xlsx (25 kb)
ESM 2 (XLSX 24 kb)


  1. Abrahamsson B, Grönbeck H (2015) NOx adsorption on ATiO3(001) perovskite surfaces. J Phys Chem C 119:18495–18503. CrossRefGoogle Scholar
  2. Añez R, Sierraalta A, Bastardo A, Coll D, Garcia B (2014) Density functional study of NO adsorption on undefected and oxygen defective Au–BaO (1 0 0) surfaces. Appl Surf Sci 307:165–171. CrossRefGoogle Scholar
  3. Añez R, Sierraalta A, Soto LJD (2017) NO and NO2 adsorption on subsurface doped MgO (100) and BaO (100) surfaces. A density functional study. Appl Surf Sci 404:216–229. CrossRefGoogle Scholar
  4. Aslan M, Johnston RL (2018) Pentameric PdAu and PdPt nanoparticles on the MgO (1 0 0) surface and their CO and O 2 adsorption properties. Eur Phys J B 91:138. CrossRefGoogle Scholar
  5. Aslan M, Davis JB, Johnston RL (2016) Global optimization of small bimetallic Pd–Co binary nanoalloy clusters: a genetic algorithm approach at the DFT level. Phys Chem Chem Phys 18:6676–6682. CrossRefGoogle Scholar
  6. Barbier A, Renaud G, Jupille J (2000) Evolution of the cluster shape during the growth of Ag on MgO (001). Surf Sci 454:979–983. CrossRefGoogle Scholar
  7. Bartholomew CH (2001) Mechanisms of catalyst deactivation. Appl Catal A Gen 212:17–60. CrossRefGoogle Scholar
  8. Bedamani SN, Indrajit Sharma B, Sarkar U (2015) NO adsorption on nickel and nickel–manganese bimetallic clusters: a density functional study. Physica E: Low-dimensional Syst Nanostruct 73:12–20. CrossRefGoogle Scholar
  9. Bezi Javan M (2015) Structural, electronic and magnetic properties of small bimetallic zirconium–palladium clusters: ab initio study. J Alloys Compd 643:56–63. CrossRefGoogle Scholar
  10. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979. CrossRefGoogle Scholar
  11. Boningari T, Pappas DK, Ettireddy PR, Kotrba A, Smirniotis PG (2015) Influence of SiO2 on M/TiO2 (M = Cu, Mn, and Ce) formulations for low-temperature selective catalytic reduction of NOx with NH3: surface properties and key components in relation to the activity of NOx reduction. Ind Eng Chem Res 54:2261–2273. CrossRefGoogle Scholar
  12. Cai R, Ellis PR, Yin J, Liu J, Brown CM, Griffin R et al (2018) Performance of preformed au/cu nanoclusters deposited on MgO powders in the catalytic reduction of 4-Nitrophenol in solution. Small 14:1703734. CrossRefGoogle Scholar
  13. Cantera-López H, Montejano-Carrizales J, Aguilera-Granja F, Morán-López J (2010) Theoretical study of bimetallic magnetic nanostructures: Co n Pd Nn, n= 0, 1, .., N, N= 3, 5, 7, 13. Eur Phys J D 57:61–69. CrossRefGoogle Scholar
  14. Cao F, Xiang J, Su S, Wang P, Hu S, Sun L (2015) Ag modified Mn–Ce/γ-Al2O3 catalyst for selective catalytic reduction of NO with NH3 at low-temperature. Fuel Process Technol 135:66–72. CrossRefGoogle Scholar
  15. Cervantes-Flores A, Cruz-Martínez H, Solorza-Feria O, Calaminici P (2017) A first-principles study of Ni n Pd n (n = 1 − 5) clusters. J Mol Model 23:161. CrossRefGoogle Scholar
  16. Crajé M, Van Der Kraan A, Van de Loosdrecht J, Van Berge P (2002) The application of Mössbauer emission spectroscopy to industrial cobalt based Fischer–Tropsch catalysts. Catal Today 71:369–379. CrossRefGoogle Scholar
  17. Damianos K, Ferrando R (2013) Structures of small Pd–Au clusters adsorbed on stepped MgO (1 0 0): a density-functional study. Chem Phys Lett 573:70–76. CrossRefGoogle Scholar
  18. Datta S, Kabir M, Ganguly S, Sanyal B, Saha-Dasgupta T, Mookerjee A (2007) Structure, bonding, and magnetism of cobalt clusters from first-principles calculations. Phys Rev B 76:014429. CrossRefGoogle Scholar
  19. Davis JB, Horswell SL, Johnston RL (2013) Global optimization of 8–10 atom palladium–iridium nanoalloys at the DFT level. J Phys Chem A 118:208–214. CrossRefGoogle Scholar
  20. Davis JBA, Horswell SL, Johnston RL (2014) Global optimization of 8–10 atom palladium–iridium nanoalloys at the DFT level. J Phys Chem A 118:208–214. CrossRefGoogle Scholar
  21. Deaven DM, Ho KM (1995) Molecular geometry optimization with a genetic algorithm. Phys Rev Lett 75:288–291. CrossRefGoogle Scholar
  22. Dirac PA (1930) Note on exchange phenomena in the Thomas atom. Paper presented at the Mathematical Proceedings of the Cambridge Philosophical Society. CrossRefGoogle Scholar
  23. Fermi E (1928) Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente. Z Phys 48:73–79. CrossRefGoogle Scholar
  24. Ferrando R, Barcaro G, Fortunelli A (2011) Structures of small Au clusters on MgO(001) studied by density-functional calculations. Phys Rev B 83:045418. CrossRefGoogle Scholar
  25. Frondelius P, Häkkinen H, Honkala K (2007a) Adsorption of gold clusters on metal-supported MgO: correlation to electron affinity of gold. Phys Rev B 76:073406. CrossRefGoogle Scholar
  26. Frondelius P, Häkkinen H, Honkala K (2007b) Adsorption of small Au clusters on MgO and MgO/Mo: the role of oxygen vacancies and the Mo-support. New J Phys 9:339–339. CrossRefGoogle Scholar
  27. Fuente SA, Belelli PG, Ferullo RM, Castellani NJ (2008) Adsorption of NO on Au atoms and dimers supported on MgO (1 0 0): DFT studies. Surf Sci 602:1669–1676. CrossRefGoogle Scholar
  28. Fuente SA, Ferullo RM, Domancich NF, Castellani NJ (2011) Interaction of NO with Au nanoparticles supported on (100) terraces and topological defects of MgO. Surf Sci 605:81–88. CrossRefGoogle Scholar
  29. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C et al (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502. CrossRefGoogle Scholar
  30. Grimme S (2004) Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem 25:1463–1473. CrossRefGoogle Scholar
  31. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799. CrossRefGoogle Scholar
  32. Guo Y, Chen Z, Rioux RM, Savage PE (2019) Hydrothermal reaction of tryptophan over Ni-based bimetallic catalysts. J Supercrit Fluids 143:336–345. CrossRefGoogle Scholar
  33. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270–283. CrossRefGoogle Scholar
  34. Heard CJ, Heiles S, Vajda S, Johnston RL (2014) Pd n Ag (4− n) and Pd n Pt (4− n) clusters on MgO (100): a density functional surface genetic algorithm investigation. Nanoscale 6:11777–11788. CrossRefGoogle Scholar
  35. Hilmen A, Schanke D, Hanssen K, Holmen A (1999) Study of the effect of water on alumina supported cobalt Fischer–Tropsch catalysts. Appl Catal A Gen 186:169–188. CrossRefGoogle Scholar
  36. Hu Y-L, Zhang W-B, Deng Y-H, Tang B-Y (2008) Initial stage of Ag deposition on regular MgO(001) surface: a DFT study. Comput Mater Sci 42:43–49. CrossRefGoogle Scholar
  37. Hu WF, Yuan HK, Chen H, Wang GZ, Zhang GL (2014) Structural and magnetic properties of CoPt clusters. Phys Lett A 378:198–206. CrossRefGoogle Scholar
  38. Jacobs G, Patterson PM, Zhang Y, Das T, Li J, Davis BH (2002) Fischer–Tropsch synthesis: deactivation of noble metal-promoted co/Al2O3 catalysts. Appl Catal A Gen 233:215–226. CrossRefGoogle Scholar
  39. Jamorski C, Martinez A, Castro M, Salahub DR (1997) Structure and properties of cobalt clusters up to the tetramer: a density-functional study. Phys Rev B 55:10905–10921. CrossRefGoogle Scholar
  40. Janssens E, Van Hoof T, Veldeman N, Neukermans S, Hou M, Lievens P (2006) Mass spectrometric and modeling investigations of bimetallic silver–cobalt clusters. Int J Mass Spectrom 252:38–46. CrossRefGoogle Scholar
  41. Javan MB (2015) Structural, electronic and magnetic properties of small bimetallic zirconium–palladium clusters: ab initio study. J Alloys Compd 643:56–63. CrossRefGoogle Scholar
  42. Johánek V, Schauermann S, Laurin M, Gopinath CS, Libuda J, Freund HJ (2004) On the role of different adsorption and reaction sites on supported nanoparticles during a catalytic reaction: NO decomposition on a Pd/alumina model catalyst. J Phys Chem B 108:14244–14254. CrossRefGoogle Scholar
  43. Johnston RL (2003) Evolving better nanoparticles: genetic algorithms for optimising cluster geometries. Dalton Trans:4193–4207.
  44. Knickelbein MB (2006) Magnetic moments of bare and benzene-capped cobalt clusters. J Chem Phys 125:044308. CrossRefGoogle Scholar
  45. Koyasu K, Mitsui M, Nakajima A, Kaya K (2002) Photoelectron spectroscopy of palladium-doped gold cluster anions; AunPd−(n= 1–4). Chem Phys Lett 358:224–230. CrossRefGoogle Scholar
  46. Kumar A, Yang X, Xu Q (2019) Ultrafine bimetallic Pt–Ni nanoparticles immobilized on 3-dimensional N-doped graphene networks: a highly efficient catalyst for dehydrogenation of hydrous hydrazine. J Mater Chem A 7:112–115. CrossRefGoogle Scholar
  47. Liu X, Tian D, Ren S, Meng C (2015) Structure sensitivity of NO adsorption–dissociation on Pdn (n = 8, 13, 19, 25) clusters. J Phys Chem C 119:12941–12948. CrossRefGoogle Scholar
  48. Löwdin PO (1950) On the non-orthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals. J Chem Phys 18:365–375. CrossRefGoogle Scholar
  49. Lu QL, Zhu LZ, Ma L, Wang GH (2005) Magnetic properties of co/cu and Co/Pt bimetallic clusters. Chem Phys Lett 407:176–179. CrossRefGoogle Scholar
  50. Ma Q-M, Xie Z, Wang J, Liu Y, Li Y-C (2006) Structures, stabilities and magnetic properties of small Co clusters. Phys Lett A 358:289–296. CrossRefGoogle Scholar
  51. Ma L, Wang J, Hao Y, Wang G (2013) Density functional theory study of FePdn (n= 2–14) clusters and interactions with small molecules. Comput Mater Sci 68:166–173. CrossRefGoogle Scholar
  52. Maroun F, Ozanam F, Magnussen O, Behm R (2001) The role of atomic ensembles in the reactivity of bimetallic electrocatalysts. Science 293:1811–1814. CrossRefGoogle Scholar
  53. Pasteur A, Dixon-Warren SJ, Ge Q, King D (1997) Dynamics of hydrogen dissociation on Pt {100}: steering, screening and thermal roughening effects. J Chem Phys 106:8896–8904. CrossRefGoogle Scholar
  54. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. CrossRefGoogle Scholar
  55. Rappe AM, Rabe KM, Kaxiras E, Joannopoulos J (1990) Optimized pseudopotentials. Phys Rev B 41:1227–1230. CrossRefGoogle Scholar
  56. Russon LM, Heidecke SA, Birke MK, Conceicao J, Morse MD, Armentrout PB (1994) Photodissociation measurements of bond dissociation energies:Ti+ 2, V+ 2, Co+ 2, and co+ 3. J Chem Phys 100:4747–4755. CrossRefGoogle Scholar
  57. Sahu B, Maofa G, Kleinman L (2003) Density-functional study of palladium-doped small gold clusters. Phys Rev B 67:115420. CrossRefGoogle Scholar
  58. Schmidt T, Albuquerque RQ, Kempe R, Kümmel S (2016) Investigating the electronic structure of a supported metal nanoparticle: Pd in SiCN. Phys Chem Chem Phys 18:31966–31972. CrossRefGoogle Scholar
  59. Solymosi F, Bánsági T, Zakar TS (2003) Surface interaction and reaction of NO+ CO on a supported au catalyst. Phys Chem Chem Phys 5:4724–4730. CrossRefGoogle Scholar
  60. Tersoff J, Hamann D (1985) Theory of the scanning tunneling microscope. Phys Rev B 31:805–813. CrossRefGoogle Scholar
  61. Thomas LH (1927) The calculation of atomic fields. In: Paper presented at the Mathematical Proceedings of the Cambridge Philosophical SocietyGoogle Scholar
  62. Tsai P-J, Chuang K-L, Yang C-J, Lee H-T, Lu F-H (2019) Synthesis of Cu–Co bimetallic nanoparticles using TiN-coated electrodes for glucose-sensing applications. J Alloys Compd 785:191–199. CrossRefGoogle Scholar
  63. Valiev M, Bylaska EJ, Govind N, Kowalski K, Straatsma TP, Van Dam HJ et al (2010) NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations. Comput Phys Commun 181:1477–1489. CrossRefGoogle Scholar
  64. Van Berge P, Van de Loosdrecht J, Barradas S, Van der Kraan A (2000) Oxidation of cobalt based Fischer–Tropsch catalysts as a deactivation mechanism. Catal Today 58:321–334. CrossRefGoogle Scholar
  65. Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41:7892–7895. CrossRefGoogle Scholar
  66. Vanpoucke DEP (2014) Modeling 1D structures on semiconductor surfaces: synergy of theory and experiment. J Phys Condens Matter 26:133001. CrossRefGoogle Scholar
  67. Wadt WR, Hay PJ (1985) Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J Chem Phys 82:284–298. CrossRefGoogle Scholar
  68. Xiang J, Wang L, Cao F, Qian K, Su S, Hu S, Wang Y, Liu L (2016) Adsorption properties of NO and NH3 over MnOx based catalyst supported on γ-Al2O3. Chem Eng J 302:570–576. CrossRefGoogle Scholar
  69. Xu G-R, Han C-C, Zhu Y-Y, Zeng J-H, Jiang J-X, Chen Y (2018) PdCo alloy nanonetworks−polyallylamine inorganic–organic nanohybrids toward the oxygen reduction reaction. Adv Mater Interfaces 5:1701322. CrossRefGoogle Scholar
  70. Yang W, Chen M, Xiao W, Guo Y, Ding J, Zhang L, He H (2018) Molecular insights into NO-promoted sulfate formation on model TiO2 nanoparticles with different exposed facets. Environ Sci Technol 52:14110–14118. CrossRefGoogle Scholar
  71. Zanti G, Peeters D (2009) DFT study of small palladium clusters Pdn and their interaction with a CO ligand (n= 1–9). Eur J Inorg Chem 2009:3904–3911. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringGaziantep UniversityGaziantepTurkey

Personalised recommendations