A wide solar spectrum light harvesting Ag2Se quantum dot-sensitized porous TiO2 nanofibers as photoanode for high-performance QDSC

  • Nisha Singh
  • Vignesh Murugadoss
  • Jeniffa Rajavedhanayagam
  • Subramania AngaiahEmail author
Research Paper


A wide spectrum of light harvesting silver selenide (Ag2Se) quantum dots (QDs) with an average size of ~ 5 nm has been synthesized by a low-temperature one-pot hot injection method. To finely control the size of Ag2Se QDs, oleylamine was used as the solvent, and dodecanethiol was used as the capping agent as well as a stabilizer. The prepared Ag2Se QDs were ex situ sensitized on the porous TiO2 nanofiber (NF) substrate via a direct adsorption method to use as efficient photoanode for quantum dot-sensitized solar cell (QDSC). The UV-Vis-NIR absorption and photoluminescence studies revealed that Ag2Se QD-sensitized porous TiO2 NF photoanode (Ag2Se/P-TiO2) exhibited near-infrared (NIR) absorption and fast electron kinetics. Further, the QDSC fabricated using Ag2Se/P-TiO2 NFs as the photoanode, Cu2S as the counter electrode, and liquid polysulfide (S2−/Sx2− redox couple) as the electrolyte exhibited a photoconversion efficiency of 2.50% with an improved photocurrent density of 11.12 mA/cm2.


Electrospinning Ag2Se quantum dots TiO2 nanofibers Quantum dot-sensitized solar cell 


Funding information

The authors gratefully acknowledge the CSIR, New Delhi, for providing the financial support (No. 01/2810/14/EMR-II dated 24-11-2014) and the CIF Pondicherry University for providing the instrumentation facilities. One of the authors, Ms. Nisha Singh, sincerely thanks the UGC, New Delhi, for providing Research Fellowship under the RGNF scheme.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. Abazovic ND, Comor MI, Dramicanin MD, Jovanovic DJ, Ahrenkiel SP, JMN (2006) Photoluminescence of anatase and rutile TiO2 particles. J Phys Chem B 110:25366–25370. CrossRefGoogle Scholar
  2. Badawi A, Mostafa NY, Al-hosiny NM et al (2018) The photovoltaic performance of Ag2S quantum dots-sensitized solar cells using plasmonic Au nanoparticles/TiO2 working electrodes. Mod Phys Lett B 1850172:1–17. CrossRefGoogle Scholar
  3. Benehkohal NP, Boix PP, Chavhan S, Demopoulos GP (2012) Colloidal PbS and PbSeS quantum dot sensitized solar cells prepared by electrophoretic deposition. J Phys Chem C 116:16391–16397CrossRefGoogle Scholar
  4. Bijarbooneh FH, Zhao Y, Sun Z, Heo YU, Malgras V, Kim JH, Dou SX (2013) Structurally stabilized mesoporous TiO2 nanofibres for efficient dye-sensitized solar cells. APL Mater 1:32106–32107CrossRefGoogle Scholar
  5. Cao Q, Che R (2014) Synthesis of near-infrared fluorescent, elongated ring-like Ag2Se colloidal nanoassemblies. RSC Adv 4:16641. CrossRefGoogle Scholar
  6. Cao Q, Cheng Y-F, Bi H, Zhao X, Yuan K, Liu Q, Li Q, Wang M, Che R (2015) Crystal defect-mediated band-gap engineering: a new strategy for tuning the optical properties of Ag2Se quantum dots toward enhanced hydrogen evolution performance. J Mater Chem A 3:20051–20055. CrossRefGoogle Scholar
  7. Chen C-C, Herhold AB, Johnson CS, Alivisatos AP (1997) Size dependence of structural metastability in semiconductor nanocrystals. Science (80) 276:398 LP-401. CrossRefGoogle Scholar
  8. Chen H, Zhang T, Fan J et al (2013) Electrospun hierarchical TiO2 nanorods with high porosity for efficient dye-sensitized solar cells. ACS Appl Mater Interfaces 5:9205–9211CrossRefGoogle Scholar
  9. Gao X, Li H, Sun W et al (2009) CdTe quantum dots-sensitized TiO2 nanotube array photoelectrodes. J Phys Chem C 113:7531–7535. CrossRefGoogle Scholar
  10. Hu J, Deng B, Lu Q et al (2000) Hydrothermal growth of b -Ag2Se tubular crystals. Chem Commun 8:715–716. CrossRefGoogle Scholar
  11. Jara DH, Yoon SJ, Stamplecoskie KG, Kamat PV (2014) Size-dependent photovoltaic performance of CuInS2 quantum dot-sensitized solar cells. Chem Mater 26:7221–7228. CrossRefGoogle Scholar
  12. Kamat PV (2008) Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J Phys Chem C 112:18737–18753CrossRefGoogle Scholar
  13. Kamat PV (2013) Quantum dot solar cells. The next big thing in photovoltaics. J Phys Chem Lett 4:908–918CrossRefGoogle Scholar
  14. Kouhnavard M, Ikeda S, Ludin NA, Ahmad Khairudin NB, Ghaffari BV, Mat-Teridi MA, Ibrahim MA, Sepeai S, Sopian K (2014) A review of semiconductor materials as sensitizers for quantum dot-sensitized solar cells. Renew Sust Energ Rev 37:397–407. CrossRefGoogle Scholar
  15. Lai L-H, Protesescu L, Kovalenko MV, Loi MA (2014) Sensitized solar cells with colloidal PbS-CdS core-shell quantum dots. Phys Chem Chem Phys 16:736–742. CrossRefGoogle Scholar
  16. Langevin M, Lachance-quirion D, Ritcey AM (2013) Size-dependent extinction coefficients and transition energies of near-infrared β-Ag2Se colloidal quantum dots. J Phys Chem C 117:5424–5428CrossRefGoogle Scholar
  17. Li W, Yang J, Liu M, Luo Y, Xiao Y, Fu L, Wu S (2014) Electrochemical atomic layer deposition of Ag2S quantum dots sensitized TiO2 nanorods array photoanodes and Cu2S counter electrode for solar cells. J Electrochem Soc 161:510–514. CrossRefGoogle Scholar
  18. Panneerselvam A, Nguyen CQ, Malik MA, O’Brien P, Raftery J (2009) The CVD of silver selenide films from dichalcogenophosphinato and imidodichalcogenodiphosphinatosilver (I) single-source precursors. J Mater Chem 19:419–427. CrossRefGoogle Scholar
  19. Pawar SA, Patil DS, Hyeok J et al (2017) Quantum dot sensitized solar cell based on TiO2/CdS/Ag2S heterostructure. Opt Mater (Amst) 66:644–650. CrossRefGoogle Scholar
  20. Pernik DR, Tvrdy K, Radich JG, Kamat PV (2011) Tracking the adsorption and electron injection rates of CdSe quantum dots on TiO2: linked versus direct attachment. J Phys Chem C 115:13511–13519. CrossRefGoogle Scholar
  21. Roy UN, Cui Y, Miles R, Burger A, Goldstein JT, Bell ZW (2005) Micro-Raman and photoluminescence spectroscopies of horizontal Bridgman-grown AgGaSe2. J Appl Phys 98:1–5. CrossRefGoogle Scholar
  22. Sahu A, Khare A, Deng DD, Norris DJ (2012) Quantum confinement in silver selenide semiconductor nanocrystals. Chem Commun 48:5458. CrossRefGoogle Scholar
  23. Singh N, Zaahir S, Subasri A, Sivasankar N, Subramania A (2018) Development of porous TiO2 nanofibers by solvosonication process for high performance quantum dot sensitized solar cell. Sol Energy Mater Sol Cells 179:417–426. CrossRefGoogle Scholar
  24. Subramania A, Vijayakumar E, Pratheep P, Sivasankar N, Karthick SN (2015) Influence of PVP template on the formation of porous TiO2 nanofibers by electrospinning technique for dye-sensitized solar cell. Appl Phys A Mater Sci Process 120:1211–1218. CrossRefGoogle Scholar
  25. Wei L, Li F, Hu S, Li H, Chi B, Pu J, Jian L (2015) CdS quantum dot-sensitized vertical TiO2 nanorod arrays by a simple linker-assisted SILAR method. J Am Ceram Soc 98:3173–3178. CrossRefGoogle Scholar
  26. Wickham JN, Herhold AB, Alivisatos AP (2000) Shape change as an indicator of mechanism in the high-pressure structural transformations of CdSe nanocrystals. Phys Rev Lett 84:923–926CrossRefGoogle Scholar
  27. Xing B, Li W, Dou H et al (2008) Systematic study of the properties of CdSe quantum dots synthesized in paraffin liquid with potential application in multiplexed bioassays. JPhysChemC 112:14318–14323Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Nisha Singh
    • 1
  • Vignesh Murugadoss
    • 1
  • Jeniffa Rajavedhanayagam
    • 1
  • Subramania Angaiah
    • 1
    Email author
  1. 1.Electro-Materials Research Laboratory, Centre for Nanoscience and TechnologyPondicherry UniversityPuducherryIndia

Personalised recommendations