Advertisement

Double redox couples manganese oxide nanorods with tunable oxygen defects and their catalytic combustion properties

  • Yaoyao Li
  • Hong Wang
  • Rongli Zhang
  • Renchun YangEmail author
Research Paper
  • 61 Downloads

Abstract

The activation process of oxygen is a key step for catalytic oxidation reaction. To accelerate the activation of oxygen, tris-valences manganese oxides with two redox couples of Mn2+/Mn3+ and Mn3+/Mn4+ were constructed. The introduction of Zn promoted an enhanced Mn3+/(Mn2++Mn3++Mn4+) ratio and then produced an appropriate stoichiometric compositions for the Mn2+/Mn3+ and Mn3+/Mn4+ redox couples. The results indicate that oxygen vacancies, as a significant influence factor for catalytic oxidation, heavily rely on the Mn3+ content of the resultant samples. Based on the double redox couples with suitable stoichiometry, the metal ion modified tris-valences manganese oxides presented an enhanced oxygen vacancies content and a better catalytic performance for toluene oxidation compared with the unmodified sample. This study offers a promising route to construct the manganese oxides with two redox couples synchronously with an enhanced Mn3+/(Mn2++Mn3++Mn4+) ratio and oxygen vacancies, resulting in a decreased activating temperature and an increased catalytic performance.

Graphical abstract

.

Keywords

Manganese oxides Redox couples Oxygen vacancies Catalytic oxidation Nanostructured catalysts 

Notes

Funding information

This study is funded by the National Nature Science Foundation of China (51,572,004 and 21,504,001), Natural Science Foundation of the Higher Education Institutions of Anhui Province, China (KJ2016SD06), Top-notch Talent Cultivation Plan of Anhui Polytechnic University (2016BJRC002), and Natural Science Fund for Distinguished Young Scholars of Anhui Polytechnic University (2016JQ01).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11051_2019_4569_MOESM1_ESM.doc (699 kb)
ESM 1 (DOC 699 kb)

References

  1. Barbero BP, Gamboa JA, Cadús LE (2006) Synthesis and characterisation of La1−xCaxFeO3 perovskite-type oxide catalysts for total oxidation of volatile organic compounds. Appl Catal B Environ 65:21–30.  https://doi.org/10.1016/j.apcatb.2005.11.018 CrossRefGoogle Scholar
  2. Barteau MA, Madix RJ (1980) The adsorption of molecular oxygen species on Ag (110). Surf Sci 97(1):101–110.  https://doi.org/10.1016/0039-6028(80)90106-5 CrossRefGoogle Scholar
  3. Borowiecki T, Gac W, Denis A (2004) Effects of small MoO3 additions on the properties of nickel catalysts for the steam reforming of hydrocarbons: III. Reduction of Ni-Mo/Al2O3 catalysts. Appl Catal A Gen 270:27–36.  https://doi.org/10.1016/j.apcata.2004.03.044 CrossRefGoogle Scholar
  4. Cai Z, Bi Y, Hu E, Liu W, Dwarica N, Tian Y, Li X, Kuang Y, Li Y, Yang XQ, Wang H, Sun X (2018) Single-crystalline ultrathin Co3O4 nanosheets with massive vacancy defects for enhanced electrocatalysis. Adv Energy Mater 8(3):1701694.  https://doi.org/10.1002/aenm.201701694 CrossRefGoogle Scholar
  5. Chen X, Kuo DH, Saragih AD, Wu ZY, Abdullah H, Lin J (2019) The effect of the Cu+/Cu2+ ratio on the redox reactions by nanoflower CuNiOS catalysts. 194: 105–115. doi:  https://doi.org/10.1016/j.ces.2018.02.016 CrossRefGoogle Scholar
  6. Cheng L, Men Y, Wang J, Wang H, An W, Wang Y, Duan Z, Liu J (2017) Crystal facet-dependent reactivity of α-Mn2O3 microcrystalline catalyst for soot combustion. Appl Catal B Environ 204:374–384.  https://doi.org/10.1016/j.apcatb.2016.11.041 CrossRefGoogle Scholar
  7. Choi JG, Do DD, Do HD (2001) Surface diffusion of adsorbed molecules in porous media: monolayer, multilayer, and capillary condensation regimes. Ind Eng Chem Res 40(19):4005–4031.  https://doi.org/10.1021/ie010195z CrossRefGoogle Scholar
  8. Deng HB, Lin L, Sun Y, Pang CS, Zhuang JP, Ouyang PK, Li ZJ, Liu SJ (2008) Perovskite-type oxide LaMnO3: an efficient and recyclable heterogeneous catalyst for the wet aerobic oxidation of lignin to aromatic aldehydes. Catal Lett 126:106–111.  https://doi.org/10.1007/s10562-008-9588-0 CrossRefGoogle Scholar
  9. Deng QF, Ren TZ, Yuan ZY (2013) Mesoporous manganese oxide nanoparticles for the catalytic total oxidation of toluene. React Kinet Mech Catal 108(2):507–518.  https://doi.org/10.1007/s11144-012-0528-z CrossRefGoogle Scholar
  10. Deng J, He S, Xie S, Yang H, Liu Y, Guo G, Dai H (2015) Ultralow loading of silver nanoparticles on Mn2O3 nanowires derived with molten salts: a high-efficiency catalyst for the oxidative removal of toluene. Environ Sci Technol 49(18):11089–11095.  https://doi.org/10.1021/acs.est.5b02350 CrossRefGoogle Scholar
  11. Fu X, Liu Y, Yao W, Wu Z (2016) One-step synthesis of bimetallic Pt-Pd/MCM-41 mesoporous materials with superior catalytic performance for toluene oxidation. Catal Commun 83:22–26.  https://doi.org/10.1016/j.catcom.2016.05.001 CrossRefGoogle Scholar
  12. Gland JL (1980) Molecular and atomic adsorption of oxygen on the Pt (111) and Pt (S)-12 (111)×(111) surfaces. Surf Sci 93(2–3):487–514.  https://doi.org/10.1016/0039-6028(80)90278-2 CrossRefGoogle Scholar
  13. He H, Lin X, Li S, Wu Z, Gao J, Wu J, Wen W, Ye D, Fu M (2018) The key surface species and oxygen vacancies in MnOx(0.4)-CeO2 toward repeated soot oxidation. Appl Catal B Environ 223:134–142.  https://doi.org/10.1016/j.apcatb.2017.08.084 CrossRefGoogle Scholar
  14. Hu J, Li WB, Liu RF (2018) Highly efficient copper-doped manganese oxide nanorod catalysts derived from CuMnO hierarchical nanowire for catalytic combustion of VOCs. Catal Today 314:147–153.  https://doi.org/10.1016/j.cattod.2018.02.009 CrossRefGoogle Scholar
  15. Huang Y, Long B, Tang M, Rui Z, Balogun M, Tong Y, Ji H (2016) Bifunctional catalytic material: an ultrastable and high-performance surface defect CeO2 nanosheets for formaldehyde thermal oxidation and photocatalytic oxidation. Appl Catal B Environ 181:779–787.  https://doi.org/10.1016/j.apcatb.2015.08.047 CrossRefGoogle Scholar
  16. Jafari AJ, Kalantari RR, Kermani M, Firooz MH (2018) Photocatalytic oxidation of benzene by ZnO coated on glass plates under simulated sunlight[J]. Chem Pap 2018:1–10.  https://doi.org/10.1007/s11696-018-0621-5 CrossRefGoogle Scholar
  17. Kim HS, Cook JB, Lin H, Ko JS, Tolbert SH, Ozolins V, Dunn B (2017) Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x. Nat Mater 16:454–460.  https://doi.org/10.1038/nmat4810 CrossRefGoogle Scholar
  18. Kima SC, Shim WG (2010) Catalytic combustion of VOCs over a series of manganese oxide catalysts. Appl Catal B Environ 98:180–185.  https://doi.org/10.1016/j.apcatb.2010.05.027 CrossRefGoogle Scholar
  19. Kleitz F, Bérubé F, Guillet–Nicolas R, Yang C, Thommes M (2010) Probing adsorption, pore condensation, and hysteresis behavior of pure fluids in three-dimensional cubic mesoporous KIT-6 silica. J Phys Chem C 114:9344–9355.  https://doi.org/10.1021/jp909836v CrossRefGoogle Scholar
  20. Kujawa J, Cerneaux S, Kujawski W (2015) Removal of hazardous volatile organic compounds from water by vacuum pervaporation with hydrophobic ceramic membranes. J Membr Sci 474:11–19.  https://doi.org/10.1016/j.memsci.2014.08.054 CrossRefGoogle Scholar
  21. Kujawa J, Al-Gharabli S, Kujawski W, Knozowska K (2017) Molecular grafting of fluorinated and nonfluorinated alkylsiloxanes on various ceramic membrane surfaces for the removal of volatile organic compounds applying vacuum membrane distillation. ACS Appl Mater Interfaces 9:6571–6590.  https://doi.org/10.1021/acsami.6b14835 CrossRefGoogle Scholar
  22. Lam SM, Sin JC, Abdullah AZ, Mohamed AR (2013) Efficient photodegradation of resorcinol with Ag2O/ZnO nanorods heterostructure under a compact fluorescent lamp irradiation. Chem Pap 67:1277–1284.  https://doi.org/10.2478/s11696-013-0395-8 CrossRefGoogle Scholar
  23. Leclercq J, Giraud F, Bianchi D, Gaillard F (2015) Study of thin films of Yttria-stabilized zirconia (YSZ) for the oxidation of some volatile organic compounds. Catal Commun 67:35–39.  https://doi.org/10.1016/j.catcom.2015.04.004 CrossRefGoogle Scholar
  24. Li X, Wang X, Antonietti M (2012) Solvent-free and metal-free oxidation of toluene using O2 and g-C3N4 with nanopores: nanostructure boosts the catalytic selectivity. ACS Catal 2:2082–2086.  https://doi.org/10.1021/cs300413x CrossRefGoogle Scholar
  25. Li J, Li L, Cheng W, Wu F, Lu X, Li Z (2014) Controlled synthesis of diverse manganese oxide-based catalysts for complete oxidation of toluene and carbon monoxide. Chem Eng J 244:59–67.  https://doi.org/10.1016/j.cej.2014.01.041 CrossRefGoogle Scholar
  26. Li D, Li W, Deng Y, Wu X, Han N, Chen Y (2016a) Effective Ti doping of δ-MnO2 via anion route for highly active catalytic combustion of benzene. J Phys Chem C 120:10275–10282.  https://doi.org/10.1021/acs.jpcc.6b00931 CrossRefGoogle Scholar
  27. Li J, Qu Z, Qin Y, Wang H (2016b) Effect of MnO2 morphology on the catalytic oxidation of toluene over Ag/MnO2 catalysts. Appl Surf Sci 385:234–240.  https://doi.org/10.1016/j.apsusc.2016.05.114 CrossRefGoogle Scholar
  28. Li W, Zhang Z, Wang J, Qiao W, Long D, Ling L (2016c) Low temperature catalytic combustion of ethylene over cobalt oxide supported mesoporous carbon spheres. Chem Eng J 293:243–251.  https://doi.org/10.1016/j.cej.2016.02.089 CrossRefGoogle Scholar
  29. Li D, Zhao Y, Chen Z, Mei X, Qiu X (2017) Enhancement of fluorescence brightness and stability of copper nanoclusters using Zn2+ for ratio-metric sensing of S2−. Mat Sci Eng C-Mate 78:653–657.  https://doi.org/10.1016/j.msec.2017.04.147 CrossRefGoogle Scholar
  30. Lin X, Li S, He H, Wu Z, Wu J, Chen L, Ye D, Fu M (2018) Evolution of oxygen vacancies in MnOx-CeO2 mixed oxides for soot oxidation. Appl Catal B Environ 223:91–102.  https://doi.org/10.1016/j.apcatb.2017.06.071 CrossRefGoogle Scholar
  31. Liu Y, Dai H, Du Y, Deng J, Zhang L, Zhao Z, Au CT (2012) Controlled preparation and high catalytic performance of three-dimensionally ordered macroporous LaMnO3 with nanovoid skeletons for the combustion of toluene. J Catal 287:149–160.  https://doi.org/10.1016/j.jcat.2011.12.015 CrossRefGoogle Scholar
  32. Liu CX, Liu Q, Bai L, Dong AQ, Liu GB, Wen SH (2013) Structure and catalytic performances of nanocrystalline Co3O4 catalysts for low temperature CO oxidation prepared by dry and wet synthetic routes. J Mol Catal A Chem 370:1–6.  https://doi.org/10.1016/j.molcata.2012.12.003 CrossRefGoogle Scholar
  33. Liu Q, Cao F, Wu F, Lu H, Li L (2016a) Ultrathin amorphous Ni(OH)2 nanosheets on ultrathin α-Fe2O3 films for improved photoelectrochemical water oxidation. Adv Mater Interfaces 3(21):1600256.  https://doi.org/10.1002/admi.201600256 CrossRefGoogle Scholar
  34. Liu P, He H, Wei G, Liang X, Qi F, Tan F, Tan W, Zhu J, Zhu R (2016b) Effect of Mn substitution on the promoted formaldehyde oxidation over spinel ferrite: catalyst characterization, performance and reaction mechanism. Appl Catal B Environ 182:476–484.  https://doi.org/10.1016/j.apcatb.2015.09.055 CrossRefGoogle Scholar
  35. Liu P, He H, Wei G, Liu D, Liang X, Chen T, Zhu J, Zhu R (2017) An efficient catalyst of manganese supported on diatomite for toluene oxidation: manganese species, catalytic performance, and structure activity relationship. Microporous Mesoporous Mater 239:101–110.  https://doi.org/10.1016/j.micromeso.2016.09.053 CrossRefGoogle Scholar
  36. Lu HH, Yin HB, Liu YM, Jiang TS, Yu LB (2008) Influence of support on catalytic activity of Ni catalysts in p-nitrophenol hydrogenation to p-aminophenol. Catal Commun 10:313–316.  https://doi.org/10.1016/j.catcom.2008.09.015 CrossRefGoogle Scholar
  37. Lv Y, Pan C, Ma X, Zong R, Bai X, Zhu Y (2013) Production of visible activity and UV performance enhancement of ZnO photocatalyst via vacuum deoxidation. Appl Catal B Environ 138–139:26–32.  https://doi.org/10.1016/j.apcatb.2013.02.011 CrossRefGoogle Scholar
  38. Ma C, Wen Y, Rong C, Zhang N, Zheng J, Chen BH (2017) δ-MnO2 with an ultrahigh Mn4+ fraction is highly active and stable for catalytic wet air oxidation of phenol under mild conditions. Catal Sci Technol 7:3200–3204.  https://doi.org/10.1039/C7CY00774D CrossRefGoogle Scholar
  39. Machocki A, Ioannides T, Stasinska B, Gac W, Avgouropoulos G, Delimaris D, Grzegorczyk W, Pasieczna S (2004) Manganese–lanthanum oxides modified with silver for the catalytic combustion of methane. J Catal 227:282–296.  https://doi.org/10.1016/j.jcat.2004.07.022 CrossRefGoogle Scholar
  40. Meng Q, Wang W, Weng X, Liu Y, Wang H, Wu Z (2016) Active oxygen species in Lan+1NinO3n+1 layered perovskites for catalytic oxidation of toluene and methane. J Phys Chem C 120:3259–3266.  https://doi.org/10.1021/acs.jpcc.5b08703 CrossRefGoogle Scholar
  41. Morales MR, Barbero BP, Cadus LE (2006) Total oxidation of ethanol and propane over Mn-Cu mixed oxide catalysts. Appl Catal B Environ 67:229–236.  https://doi.org/10.1016/j.apcatb.2006.05.006 CrossRefGoogle Scholar
  42. Napruszewska BD, Michalik-Zym A, Dula R, Bielańska E, Rojek W, Machej T, Socha RP, Lityńska-Dobrzyńska L, Bahranowski K, Serwicka EM (2017) Composites derived from exfoliated laponite and Mn-Al hydrotalcite prepared in inverse microemulsion: a new strategy for design of robust VOCs combustion catalysts. Appl Catal B Environ 211:46–56.  https://doi.org/10.1016/j.apcatb.2017.04.030 CrossRefGoogle Scholar
  43. Pan H, Jian Y, Chen C, He C, Hao Z, Shen Z, Liu H (2017) Sphere-shaped Mn3O4 catalyst with remarkable low-temperature activity for methyl–ethyl–ketone combustion. Environ Sci Technol 51(11):6288–6297.  https://doi.org/10.1021/acs.est.7b00136 CrossRefGoogle Scholar
  44. Piumetti M, Fino D, Russo N (2015) Mesoporous manganese oxides prepared by solution combustion synthesis as catalysts for the total oxidation of VOCs. Appl Catal B Environ 163:277–287.  https://doi.org/10.1016/j.apcatb.2014.08.012 CrossRefGoogle Scholar
  45. Popova M, Ristić A, Mavrodinova V, Maučec D, Mindizova L, Novak Tušar N (2014) Design of cobalt functionalized silica with interparticle mesoporosity as a promising catalyst for VOCs decomposition. Catal Lett 144:1096–1100.  https://doi.org/10.1007/s10562-014-1246-0 CrossRefGoogle Scholar
  46. Quiroz J, Giraudon JM, Gervasini A, Dujardin C, Lancelot C, Trentesaux M, Lamonier JF (2015) Total oxidation of formaldehyde over MnOx-CeO2 catalysts: the effect of acid treatment. ACS Catal 5:2260–2269.  https://doi.org/10.1021/cs501879j CrossRefGoogle Scholar
  47. Scofield JH (1976) Hartree-slater subshell photoionization cross-sections at 1254 and 1487 eV. J Electron Spectrosc 8:129–137.  https://doi.org/10.1016/0368-2048(76)80015-1 CrossRefGoogle Scholar
  48. Si W, Wang Y, Zhao S, Hu F, Li J (2016) A facile method for in situ preparation of the MnO2/LaMnO3 catalyst for the removal of toluene. Environ Sci Technol 50(8):4572–4578.  https://doi.org/10.1021/acs.est.5b06255 CrossRefGoogle Scholar
  49. Sihaib Z, Puleo F, Garcia-Vargas JM, Retailleau L, Descorme C, Liotta LF, Valverde JL, Gil S, Giroir-Fendler A (2017) Manganese oxide-based catalysts for toluene oxidation. Appl Catal B Environ 209:689–700.  https://doi.org/10.1016/j.apcatb.2017.03.042 CrossRefGoogle Scholar
  50. Son HK, Sivakumar S, Rood MJ, Kim BJ (2016) Electrothermal adsorption and desorption of volatile organic compounds on activated carbon fiber cloth. J Hazard Mater 301:27–34.  https://doi.org/10.1016/j.jhazmat.2015.08.040 CrossRefGoogle Scholar
  51. Su J, Liu Y, Yao W, Wu Z (2016) Catalytic combustion of dichloromethane over HZSM-5-supported typical transition metal (Cr, Fe, and Cu) oxide catalysts: a stability study. J Phys Chem C 120:18046–18054.  https://doi.org/10.1021/acs.jpcc.6b04702 CrossRefGoogle Scholar
  52. Topka P, Luděk K, Gaálová J (2016) Total oxidation of ethanol and toluene over ceria—zirconia supported platinum catalysts. Chem Pap 70:898–906.  https://doi.org/10.1515/chempap-2016-0028 CrossRefGoogle Scholar
  53. Valentin CD, Finazzi E, Pacchioni G, Selloni A, Livraghi S, Paganini MC, Giamello E (2007) N-doped TiO2: theory and experiment. Chem Phys 339:44–56.  https://doi.org/10.1016/j.chemphys.2007.07.020 CrossRefGoogle Scholar
  54. Wu J, Zhou T, Wang Q, Umar A (2016) Morphology and chemical composition dependent synthesis and electrochemical properties of MnO2-based nanostructures for efficient hydrazine detection. Sensors Actuators B Chem 224:878–884.  https://doi.org/10.1016/j.snb.2015.09.016 CrossRefGoogle Scholar
  55. Yang R, Yang L, Tao T, Ma F, Xu M, Zhang Z (2014) Contrastive study of structure and photocatalytic performance with three-dimensionally ordered macroporous CuO–TiO2 and CuO/TiO2. Appl Surf Sci 288:363–368.  https://doi.org/10.1016/j.apsusc.2013.10.033 CrossRefGoogle Scholar
  56. Yang P, Li J, Zuo S (2017) Promoting oxidative activity and stability of CeO2 addition on the MnOx modified kaolin-based catalysts for catalytic combustion of benzene. Chem Eng Sci 162:218–226.  https://doi.org/10.1016/j.ces.2017.01.009 CrossRefGoogle Scholar
  57. Yang X, Yu X, Lin M, Ma X, Ge M (2019) Enhancement effect of acid treatment on Mn2O3 catalyst for toluene oxidation. Catal Today 327:254–261.  https://doi.org/10.1016/j.cattod.2018.04.041 CrossRefGoogle Scholar
  58. Yu L, Diao GQ, Ye F, Sun M, Zhou JL, Li YF, Liu Y (2011) Promoting effect of Ce in Ce/OMS-2 catalyst for catalytic combustion of dimethyl ether. Catal Lett 141:111–119.  https://doi.org/10.1007/s10562-010-0475-0 CrossRefGoogle Scholar
  59. Zafiris GS, Gorte RJ (1993) Evidence for low-temperature oxygen migration from ceria to Rh. J Catal 139:561–567.  https://doi.org/10.1006/jcat.1993.1049 CrossRefGoogle Scholar
  60. Zhang J, Li Y, Wang L, Zhang C, He H (2015) Catalytic oxidation of formaldehyde over manganese oxides with different crystal structures. Catal Sci Technol 5(4):2305–2313.  https://doi.org/10.1039/C4CY01461H CrossRefGoogle Scholar
  61. Zhang Q, Luan H, Li T, Ni Y (2016) Study on Pt-structured anodic alumina catalysts for catalytic combustion of toluene: effects of competitive adsorbents and competitive impregnation methods. Appl Surf Sci 360:1066–1074.  https://doi.org/10.1016/j.apsusc.2015.11.149 CrossRefGoogle Scholar
  62. Zhu Y, Sun Y, Niu X, Yuan F, Fu H (2010) Preparation of La-Mn-O perovskite catalyst by microwave irradiation method and its application to methane combustion. Catal Lett 135:152–158.  https://doi.org/10.1007/s10562-009-0034-8 CrossRefGoogle Scholar
  63. Zhu G, Zhu J, Jiang W, Zhang Z, Wang J, Zhu Y, Zhang Q (2017) Surface oxygen vacancy induced α-MnO2 nanofiber for highly efficient ozone elimination. Appl Catal B Environ 209:729–737.  https://doi.org/10.1016/j.apcatb.2017.02.068 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Biological and Chemical EngineeringAnhui Polytechnic UniversityWuhuChina

Personalised recommendations