Advertisement

Cerium-doped indium oxide nanosphere arrays with enhanced ethanol-sensing properties

  • Xianjia Chen
  • Ni Deng
  • Xuanji Zhang
  • Jing Li
  • Yanting Yang
  • Bo Hong
  • Dingfeng Jin
  • Xiaoling Peng
  • Xinqing Wang
  • Hongliang Ge
  • Hongxiao JinEmail author
Research Paper
  • 56 Downloads

Abstract

Mesoporous gas-sensitive nanomaterials have attracted the attention of more and more researchers because of their excellent stability and selectivity. Herein, pure and cerium-doped indium oxide 3D nanosphere (26–19 nm in diameter) arrays were synthesized via nanocasting using mesoporous silica as hard templates. The content of the Ce dopant ions has been found critical to control the structure, optical properties, and gas-sensing activities of the materials. The Ce-doped indium oxide shows significantly improved gas-sensing properties as compared to undoped indium oxide. And the sensor fabricated from the 3 mol% Ce-doped In2O3 with mesoporous nanospheres exhibited excellent sensing properties to ethanol at the optimum temperature of 330 °C. The significantly improved sensing performances may be ascribed to the mesostructured morphology and the doping of Ce ion. Optimizing the performance of mesoporous gas-sensing materials through various channels still requires our continuous efforts.

Keywords

Ce-doped In2O3 Sensing properties Mesoporous nanospheres Nanocasting Gas nanostructured sensor 

Notes

Acknowledgements

We thank the Natural Science Foundation of Zhejiang Province (Grant No. LY16E030004, LY16B030006) and the Foundation of Science and Technology Department of Zhejiang Province (Grant No. 2017C33078).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11051_2019_4516_MOESM1_ESM.doc (11.9 mb)
ESM 1 (DOC 12181 kb)

References

  1. Abdullah QN, Obaid AS, Bououdina M (2018) Influence of gas carrier on morphological and optical properties of nanostructured In2O3 grown by solid-vapour process. Ceram Int 44:4699–4703.  https://doi.org/10.1016/j.ceramint.2017.12.051 CrossRefGoogle Scholar
  2. Addabbo T, Bruzzi M, Fort A, Mugnaini M, Vignoli V (2018) Gas sensing properties of In2O3 nano-films obtained by low temperature pulsed electron deposition technique on alumina substrates. Sensors-basel 18:1424–8220.  https://doi.org/10.3390/s18124410 CrossRefGoogle Scholar
  3. Anand K, Kaur J, Singh RC, Thangaraj R (2015) Effect of terbium doping on structural, optical and gas sensing properties of In2O3 nanoparticles. Mater Sci Semicond Process 39:476–483.  https://doi.org/10.1016/j.mssp.2015.05.042 CrossRefGoogle Scholar
  4. Anand K, Kaur J, Singh RC, Thangaraj R (2017) Temperature dependent selectivity towards ethanol and acetone of Dy3+-doped In2O3 nanoparticles. Chem Phys Lett 670:37–45.  https://doi.org/10.1016/j.cplett.2016.12.057 CrossRefGoogle Scholar
  5. Ayeshamariam A, Kashif M, Bououdina M, Hashim U, Jayachandran M, Ali ME (2014) Morphological, structural, and gas-sensing characterization of tin-doped indium oxide nanoparticles. Ceram Int 40:1321–1328.  https://doi.org/10.1016/j.ceramint.2013.07.012 CrossRefGoogle Scholar
  6. Bloor LG, Manzi J, Binions R, Parkin IP, Pugh D, Afonja A, Blackman CS, Sathasivam S, Carmalt CJ (2012) Tantalum and titanium doped In2O3 thin films by aerosol-assisted chemical vapor deposition and their gas sensing properties. Chem Mater 24:2864–2871.  https://doi.org/10.1021/cm300596c CrossRefGoogle Scholar
  7. Capone S, Manera MG, Taurino A, Siciliano P, Rella R, Luby S, Benkovicova M, Siffalovic P, Majkova E (2014) Fe3O4/gamma-Fe2O3 nanoparticle multilayers deposited by the Langmuir-Blodgett technique for gas sensors application. Langmuir 30:1190–1197.  https://doi.org/10.1021/la404542u CrossRefGoogle Scholar
  8. Chen SF, Yu XL, Zhang HY, Liu W (2010) Preparation, characterization and activity evaluation of heterostructure In2O3/In(OH)3 photocatalyst. J Hazard Mater 180:735–740.  https://doi.org/10.1016/j.jhazmat.2010.04.108 CrossRefGoogle Scholar
  9. Cheng JP, Wang BB, Zhao MG, Liu F, Zhang XB (2014) Nickel-doped tin oxide hollow nanofibers prepared by electrospinning for acetone sensing. Sensor Actuat B-Chem 190:78–85.  https://doi.org/10.1016/j.snb.2013.08.098 CrossRefGoogle Scholar
  10. Choi SB, Lee JK, Lee WS, Ko TG, Lee C (2018) Optimization of the Pt nanoparticle size and calcination temperature for enhanced sensing performance of Pt-decorated In2O3 nanorods. J Korean Phys Soc 73:1444–1451.  https://doi.org/10.3938/jkps.73.1444 CrossRefGoogle Scholar
  11. Deng N, Li J, Hong B, Jin D, Peng X, Wang X, Ge H, Jin H (2015) Nanocasting synthesis of co-doped In2O3: a 3D diluted magnetic semiconductor composed of nanospheres. J Nanopart Res 17:11.  https://doi.org/10.1007/s11051-015-2987-4 CrossRefGoogle Scholar
  12. Dong R, Zhang LP, Zhu ZY, Yang J, Gao X, Wang S (2017) Fabrication and formaldehyde sensing performance of Fe-doped In2O3 hollow microspheres via a one-pot method. Crystengcomm 19:562–569.  https://doi.org/10.1039/c6ce02061e CrossRefGoogle Scholar
  13. Duan HJ, Wang YF, Li S, Li H, Liu L, du L, Cheng Y (2018) Controllable synthesis of Ho-doped In2O3 porous nanotubes by electrospinning and their application as an ethanol gas sensor. J Mater Sci 53:3267–3279.  https://doi.org/10.1007/s10853-017-1796-9 CrossRefGoogle Scholar
  14. Hafeezullah YZH, Iqbal J et al (2014) Rapid sonochemical synthesis of In2O3 nanoparticles their doping optical, electrical and hydrogen gas sensing properties. J Alloys Compd 616:76–80.  https://doi.org/10.1016/j.jallcom.2014.07.015 CrossRefGoogle Scholar
  15. Han D, Song P, Zhang S, Zhang HH, Xu Q, Wang Q (2015) Enhanced methanol gas-sensing performance of Ce-doped In2O3 porous nanospheres prepared by hydrothermal method. Sensor Actuat B-Chem 216:488–496.  https://doi.org/10.1016/j.snb.2015.04.083 CrossRefGoogle Scholar
  16. Inyawilert K, Wisitsoraat A, Liewhiran C, Tuantranont A, Phanichphant S (2019) H2 gas sensor based on PdOx-doped In2O3 nanoparticles synthesized by flame spray pyrolysis. Appl Surf Sci 475:191–203.  https://doi.org/10.1016/j.apsusc.2018.12.274 CrossRefGoogle Scholar
  17. Karmaoui M, Leonardi SG, Latino M, Tobaldi DM, Donato N, Pullar RC, Seabra MP, Labrincha JA, Neri G (2016) Pt-decorated In2O3 nanoparticles and their ability as a highly sensitive (< 10 ppb) acetone sensor for biomedical applications. Sensor Actuat B-Chem 230:697–705.  https://doi.org/10.1016/j.snb.2016.02.100 CrossRefGoogle Scholar
  18. Khatoon S, Coolahan K, Lofland SE, Ahmad T (2012) Optical and magnetic properties of solid solutions of In2−xMnxO3 (0.05, 0.10 and 0.15) nanoparticles. J Alloys Compd 545:162–167CrossRefGoogle Scholar
  19. Li ZY, Dzenis Y (2011) Highly efficient rapid ethanol sensing based on Co-doped In2O3 nanowires. Talanta 85:82–85.  https://doi.org/10.1016/j.talanta.2011.03.033 CrossRefGoogle Scholar
  20. Li Q, Zhang YT, Wang ZM, Li YF, Ding W, Wang T, Yun F (2018a) Heavily tin-doped indium oxide nano-pyramids as high-performance gas sensor. AIP Adv 8:2158–3226.  https://doi.org/10.1063/1.5048622 CrossRefGoogle Scholar
  21. Li SQ, Diao Y, Yang Z, He J, Wang J, Liu C, Liu F, Lu H, Yan X, Sun P, Lu G (2018b) Enhanced room temperature gas sensor based on Au-loaded mesoporous In2O3 nanospheres@polyaniline core-shell nanohybrid assembled on flexible PET substrate for NH3 detection. Sensor Actuat B-Chem 276:526–533.  https://doi.org/10.1016/j.snb.2018.08.120 CrossRefGoogle Scholar
  22. Lin B, Fu Z, Jia Y (2012) Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Appl Phys Lett 100:1.  https://doi.org/10.1063/1.3703515 CrossRefGoogle Scholar
  23. Liu Y, Liu HB, Chen ZG, Kadasala N, Mao C, Wang Y, Zhang Y, Liu H, Liu Y, Yang J, Yan Y (2014) Effects of Ni concentration on structural, magnetic and optical properties of Ni-doped ZnO nanoparticles. J Alloys Compd 604:281–285.  https://doi.org/10.1016/j.jallcom.2014.03.079 CrossRefGoogle Scholar
  24. Liu XJ, Jiang L, Jiang XM, Tian X, Sun X, Wang Y, He W, Hou P, Deng X, Xu X (2018) Synthesis of Ce-doped In2O3 nanostructure for gas sensor applications. Appl Surf Sci 428:478–484.  https://doi.org/10.1016/j.apsusc.2017.09.177 CrossRefGoogle Scholar
  25. Ma RJ, Zhao X, Zou XX, Li GD (2018) Enhanced formaldehyde sensing performance at ppb level with Pt-doped nanosheet-assembled In2O3 hollow microspheres. J Alloy Compd 732:863–870.  https://doi.org/10.1016/j.jallcom.2017.10.224 CrossRefGoogle Scholar
  26. Mishra RK, Kushwaha A, Sahay PP (2014) Influence of Cu doping on the structural, photoluminescence and formaldehyde sensing properties of SnO2 nanoparticles. RSC Adv 4:3904–3912.  https://doi.org/10.1039/c3ra43709d CrossRefGoogle Scholar
  27. Montazeri A, Jamali-Sheini F (2017) Enhanced ethanol gas-sensing performance of Pb-doped In2O3 nanostructures prepared by sonochemical method. Sensor Actuat B-Chem 242:778–791.  https://doi.org/10.1016/j.snb.2016.09.181 CrossRefGoogle Scholar
  28. Pammi SVN, Park YW, Chanda A, Ahn JK, Yoon SG (2011) Self-catalytic growth of indium oxide flower-like nanostructures by nano-cluster deposition (NCD) at low temperature. Crystengcomm 13:663–667.  https://doi.org/10.1039/c0ce00222d CrossRefGoogle Scholar
  29. Pramod NG, Pandey SN (2014) Influence of Sb doping on the structural, optical, electrical and acetone sensing properties of In2O3 thin films. Ceram Int 40:3461–3468.  https://doi.org/10.1016/j.ceramint.2013.09.084 CrossRefGoogle Scholar
  30. Qiang XY, Hu M, Zhao BS, Qin Y, Zhang TY, Zhou LW, Liang JR (2018) Preparation of porous silicon/Pd-loaded WO3 nanowires for enhancement of ammonia sensing properties at room temperature. Mater Sci Semicond Process 79:113–118.  https://doi.org/10.1016/j.mssp.2018.01.025 CrossRefGoogle Scholar
  31. Qin ZJ, Liu YK, Chen WW, Ai P, Wu YM, Li SH, Yu DP (2016) Highly sensitive alcohol sensor based on a single Er-doped In2O3 nanoribbon Chem Phys Lett 646:12-17 doi: https://doi.org/10.1016/j.cplett.2015.12.054 CrossRefGoogle Scholar
  32. Qu Y, Wang H, Chen H, Xiao J, Lin Z, Dai K (2015) Highly sensitive and selective toluene sensor based on Ce-doped coral-like SnO2. RSC Adv 5:16446–16449.  https://doi.org/10.1039/c4ra12315h CrossRefGoogle Scholar
  33. Rai P, Yoon JW, Kwak CH, Lee JH (2016) Role of Pd nanoparticles in gas sensing behaviour of Pd@In2O3 yolk-shell nanoreactors. J Mater Chem A 4:264–269.  https://doi.org/10.1039/c5ta08873a CrossRefGoogle Scholar
  34. Shukla S, Chaudhary S, Umar A, Chaudhary GR, Mehta SK (2014) Tungsten oxide (WO3) nanoparticles as scaffold for the fabrication of hydrazine chemical sensor. Sensor Actuat B-Chem 196:231–237.  https://doi.org/10.1016/j.snb.2014.02.016 CrossRefGoogle Scholar
  35. Singh N, Gupta RK, Lee PS (2011) Gold-nanoparticle-functionalized In2O3 nanowires as CO gas sensors with a significant enhancement in response. ACS Appl Mater Interfaces 3:2246–2252.  https://doi.org/10.1021/am101259t CrossRefGoogle Scholar
  36. Song YG, Shim YS, Kim S, Han SD, Moon HG, Noh MS, Lee K, Lee HR, Kim JS, Ju BK, Kang CY (2017) Downsizing gas sensors based on semiconducting metal oxide: effects of electrodes on gas sensing properties. Sensor Actuat B-Chem 248:949–956.  https://doi.org/10.1016/j.snb.2017.02.035 CrossRefGoogle Scholar
  37. Su XS, Gao L, Zhou F, Duan GT (2017) A substrate-independent fabrication of hollow sphere arrays via template-assisted hydrothermal approach and their application in gas sensing. Sensor Actuat B-Chem 251:74–85.  https://doi.org/10.1016/j.snb.2017.05.024 CrossRefGoogle Scholar
  38. Sun YJ, Suematsu K, Watanabe K, Nishibori M, Hu J, Zhang WD, Shimanoe K (2018) Determination of effective oxygen adsorption species for CO sensing based on electric properties of indium oxide. J Electrochem Soc 165:B275–B280.  https://doi.org/10.1149/2.0591807jes CrossRefGoogle Scholar
  39. Trakhtenberg LI, Gerasimov GN, Gromov VF, Belysheva TV, Ilegbusi OJ (2015) Effect of composition and temperature on conductive and sensing properties of CeO2+In2O3 nanocomposite films. Sensor Actuat B-Chem 209:562–569.  https://doi.org/10.1016/j.snb.2014.12.022 CrossRefGoogle Scholar
  40. Vazquez-Olmos AR, Gomez-Peralta JI, Sato-Berru RY, Fernandez-Osorio AL (2014) Diluted magnetic semiconductors based on Mn-doped In2O3 nanoparticles. J Alloys Compd 615:S522–S525.  https://doi.org/10.1016/j.jallcom.2014.01.085 CrossRefGoogle Scholar
  41. Waitz T, Wagner T, Sauerwald T, Kohl CD, Tiemann M (2009) Ordered mesoporous In2O3: synthesis by structure replication and application as a methane gas sensor. Adv Funct Mater 19:653–661.  https://doi.org/10.1002/adfm.200801458 CrossRefGoogle Scholar
  42. Wan XF, Goberman D, Shaw LL, Yi G, Chow GM (2010) Valence states of nanocrystalline ceria under combined effects of hydrogen reduction and particle size. Appl Phys Lett 96:3.  https://doi.org/10.1063/1.3371687 CrossRefGoogle Scholar
  43. Wang JX et al. (2017) Ag-modified In2O3 nanoparticles for highly sensitive and selective ethanol alarming. Sensors-basel 17 doi:  https://doi.org/10.3390/s17102220 CrossRefGoogle Scholar
  44. Wei DD, Huang ZS, Wang LW, Chuai X, Zhang S, Lu G (2018) Hydrothermal synthesis of Ce-doped hierarchical flower-like In2O3 microspheres and their excellent gas-sensing properties. Sensor Actuat B-Chem 255:1211–1219.  https://doi.org/10.1016/j.snb.2017.07.162 CrossRefGoogle Scholar
  45. Xu L, Dong BA, Wang Y, Bai X, Chen J, Liu Q, Song H (2010) Porous In2O3:RE (RE = Gd, Tb, Dy, Ho, Er, Tm, Yb) nanotubes: electrospinning preparation and room gas-sensing properties. J Phys Chem C 114:9089–9095.  https://doi.org/10.1021/jp101115v CrossRefGoogle Scholar
  46. Xu XJ, Fan HT, Liu YT, Wang L, Zhang T (2011) Au-loaded In2O3 nanofibers-based ethanol micro gas sensor with low power consumption. Sensor Actuat B-Chem 160:713–719.  https://doi.org/10.1016/j.snb.2011.08.053 CrossRefGoogle Scholar
  47. Xu DM, Guan MY, Xu QH, Guo Y, Wang Y (2013) Ethanol sensor of CdO/Al2O3/CeO2 obtained from Ce-DOPED layered double hydroxides with high response and selectivity. Funct Mater Lett 6.  https://doi.org/10.1142/S1793604713500355 CrossRefGoogle Scholar
  48. Yang HX, Liu L, Liang H, Wei J, Yang Y (2011) Phase-controlled synthesis of monodispersed porous In2O3 nanospheres via an organic acid-assisted hydrothermal process. Crystengcomm 13:5011–5016.  https://doi.org/10.1039/c1ce05274h CrossRefGoogle Scholar
  49. Yang HX, Wang SP, Yang YZ (2012) Zn-doped In2O3 nanostructures: preparation, structure and gas-sensing properties. Crystengcomm 14:1135–1142.  https://doi.org/10.1039/c1ce06143g CrossRefGoogle Scholar
  50. Yang SQ, Song Z, Gao N, Hu Z, Zhou L, Liu J, Zhang B, Zhang G, Jiang S, Li HY, Liu H (2019) Near room temperature operable H2S sensors based on In2O3 colloidal quantum dots. Sensor Actuat B-Chem 286:22–31.  https://doi.org/10.1016/j.snb.2019.01.110 CrossRefGoogle Scholar
  51. Zai JT, Zhu J, Qi RR, Qian XF (2013) Nearly monodispersed In(OH)3 hierarchical nanospheres and nanocubes: tunable ligand-assisted synthesis and their conversion into hierarchical In2O3 for gas sensing. J Mater Chem A 1:735–745.  https://doi.org/10.1039/c2ta00750a CrossRefGoogle Scholar
  52. Zhang S, Song P, Yan HH, Wang Q (2016) Self-assembled hierarchical Au-loaded In2O3 hollow microspheres with superior ethanol sensing properties. Sensor Actuat B-Cheml 231:245–255.  https://doi.org/10.1016/j.snb.2016.03.020 CrossRefGoogle Scholar
  53. Zhang S, Song P, Zhang J, Yan HH, Li J, Yang ZX, Wang Q (2017) Highly sensitive detection of acetone using mesoporous In2O3 nanospheres decorated with Au nanoparticles. Sensor Actuat B-Chem 242:983–993.  https://doi.org/10.1016/j.snb.2016.09.155 CrossRefGoogle Scholar
  54. Zhao J, Yang TL, Liu YP, Wang Z, Li X, Sun Y, du Y, Li Y, Lu G (2014) Enhancement of NO2 gas sensing response based on ordered mesoporous Fe-doped In2O3. Sensor Actuat B-Chem 191:806–812.  https://doi.org/10.1016/j.snb.2013.09.118 CrossRefGoogle Scholar
  55. Zheng JH, Jiang Q, Lian JS (2011) Synthesis and optical properties of flower-like ZnO nanorods by thermal evaporation method. Appl Surf Sci 257:5083–5087.  https://doi.org/10.1016/j.apsusc.2011.01.025 CrossRefGoogle Scholar
  56. Zhu Z, Kao CT, Wu RJ (2014) A highly sensitive ethanol sensor based on Ag@TiO2 nanoparticles at room temperature. Appl Surf Sci 320:348–355.  https://doi.org/10.1016/j.apsusc.2014.09.108 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Zhejiang Province Key Laboratory of Magnetism, College of Materials Science and EngineeringChina Jiliang UniversityHangzhouPeople’s Republic of China

Personalised recommendations