Particle Background Levels In Human Tissues—PABALIHT project. Part I: a nanometallomic study of metal-based micro- and nanoparticles in liver and kidney in an Italian population group

  • Emanuela Locci
  • Ilaria PiliaEmail author
  • Roberto Piras
  • Sergio Pili
  • Gabriele Marcias
  • Pierluigi Cocco
  • Fabio De Giorgio
  • Manuele Bernabei
  • Valentina Brusadin
  • Laura Allegrucci
  • Alessandra Bandiera
  • Ernesto d’Aloja
  • Enrico Sabbioni
  • Marcello Campagna
Research Paper


We used field-emission scanning electron microscopy (FESEM) coupled with energy dispersive X-ray spectroscopy (EDS) microanalysis to determine size, shape, and elemental composition of particles in the liver and kidney autopsy of 35 subjects living in Sardinia. Particles were detected in 94% of livers and in 97% of kidney samples as aggregates, ranging between 50 nm and 100 μm. A total of 513 particle aggregates were observed in all tissues (276 in the liver and 237 in the kidney samples). Aggregates consisted of single elements (As, Ba, Cu, F, Fe, Ge, Hg, Ni, P, Pb, S, Si, Ti) or multiple association of elements, up to six. Silicon and Fe were the main element constituents (presence in 61% and 23% of the total Pags) followed by Al, Hg, Ni, Pb, and Ti (< 1%). Calcium, Cl, Co, Cr, Na, K, P, Sc, Sn, W, V, Zn, sometimes Mg, Rh, and Ta, were also detected. Overall, our findings suggest that the ubiquitous presence of metal species as particle aggregates in human tissues would be a condition of normality, although such presence per se is far from being used as a toxicity biomarker. Before being able to clarify the implications of particles in diseases or normal physiological processes, the biological meaning of particles background level we observed in liver and kidney must be elucidated.


Particles kinetic Nanoparticle Human tissues General population Field-emission scanning electron microscopy Biomedicine Environmental and health effects 





Field-emission scanning microscopy


Energy dispersive X-ray spectroscopy


Particle aggregate


Metal-based nanoparticles


Particle Background Levels In Human Tissues


Engineered nanoparticles


Work distance


Silicon drift detector


Gold nanoparticles


Silver nanoparticles


Sodium tetrachloroaurate (III)dehydrate


Silver nitrate


Standard deviation


Nanoparticle aggregates


Micro-particle aggregates




Mononuclear phagocytic system



This study marks the beginning of the PABALHIT project. Each department is contributing to the project with its own research funds. The authors are grateful to Prof Cesare Castellini (Department of Applied Biology, University of Perugia, Italy) who made possible our study on leaching with formalin/ethanol on rabbit liver and kidney. Such tissues were obtained in the context of a research program he carried out on the effects of nanoparticles on the reproductive activity of buck rabbits as conducted in accordance with the Guiding Principles on Animal Use in Toxicology and approved by the Animal Ethics Monitoring Committee at the University of Siena.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Alauddin M, Kim KK, Roy M, Song JK, Kim MS, Park SM (2013) Aggregation of laser-generated gold nanoparticles mediated by formalin. Bull Kor Chem Soc 34:188–196. CrossRefGoogle Scholar
  2. Anderson DS, Silva RM, Lee D, Edwards PC, Sharmah A, Guo T, Pinkerton KE, van Winkle LS (2015) Persistence of silver nanoparticles in the rat lung: influence of dose, size, and chemical composition. Nanotoxicology 9:591–602. CrossRefGoogle Scholar
  3. Apollonio M, Cossu A, Luccarini S, et al (2014) Proposta di PFVR 2013–2018 Valutazione Ambientale Strategica - RAPPORTO AMBIENTALEGoogle Scholar
  4. Bahadar H, Maqbool F, Niaz K, Abdollahi M (2016) Toxicity of nanoparticles and an overview of current experimental models. Iran Biomed J 20:1–11Google Scholar
  5. Banerjee A, Berzhkovskii A, Nossal R (2014) Efficiency of cellular uptake of nanoparticles via receptor-mediated endocytosis. Phys Biol 13:1–21. CrossRefGoogle Scholar
  6. Bocca B, Sabbioni E, Mičetić I, Alimonti A, Petrucci F (2017) Size and metal composition characterization of nano- and microparticles in tattoo inks by a combination of analytical techniques. J Anal At Spectrom 32:616–628. CrossRefGoogle Scholar
  7. Bosisio S, Fortaner S, Rizzio E, Groppi F, Salvini A, Bode P, Wolterbeek B, Gioacchino M, Sabbioni E (2015) Nuclear and spectrochemical techniques in developmental metal toxicology research. Whole-body elemental composition of Xenopus laevis larvae. J Radioanal Nucl Chem 303:2127–2134. CrossRefGoogle Scholar
  8. Buonanno G, Fuoco FC, Stabile L (2011) Influential parameters on particle exposure of pedestrians in urban microenvironments. Atmos Environ 45:1434–1443. CrossRefGoogle Scholar
  9. Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2:MR17–MR71. CrossRefGoogle Scholar
  10. Campagna M, Frattolillo A, Pili S, Marcias G, Angius N, Mastino C, Cocco P, Buonanno G (2016) Environmental exposure to ultrafine particles inside and nearby a military airport. Atmosphere (Basel) 7. CrossRefGoogle Scholar
  11. Castellini C, Ruggeri S, Mattioli S, Bernardini G, Macchioni L, Moretti E, Collodel G (2014) Long-term effects of silver nanoparticles on reproductive activity of rabbit buck. Syst Biol Reprod Med 60:143–150. CrossRefGoogle Scholar
  12. Cesaroni G, Badaloni C, Gariazzo C, Stafoggia M, Sozzi R, Davoli M, Forastiere F (2013) Long-term exposure to urban air pollution and mortality in a cohort of more than a million adults in Rome. Environ Health Perspect 121:324–331. CrossRefGoogle Scholar
  13. Chu M, Wu Q, Yang H, Yuan R, Hou S, Yang Y, Zou Y, Xu S, Xu K, Ji A, Sheng L (2010) Transfer of quantum dots from pregnant mice to pups across the placental barrier. Small 6:670–678. CrossRefGoogle Scholar
  14. De Matteis V, Valeria (2017) Exposure to inorganic nanoparticles: routes of entry, immune response, biodistribution and in vitro/in vivo toxicity evaluation. Toxics 5:29. CrossRefGoogle Scholar
  15. Dvorackova J, Bielnikova H, Kukutschova J, Peikertova P, Filip P, Zelenik K, Kominek P, Uvirova M, Pradna J, Cermakova Z, Dvoracek I (2015) Detection of nano- and micro-sized particles in routine biopsy material—pilot study. Biomed Pap 159:87–92. CrossRefGoogle Scholar
  16. Dziendzikowska K, Gromadzka-Ostrowska J, Lankoff A, Oczkowski M, Krawczyńska A, Chwastowska J, Sadowska-Bratek M, Chajduk E, Wojewódzka M, Dušinská M, Kruszewski M (2012) Time-dependent biodistribution and excretion of silver nanoparticles in male Wistar rats. J Appl Toxicol 32:920–928. CrossRefGoogle Scholar
  17. Ellenbecker MJ, Tsai CS-J (2015) Routes of exposure for engineered nanoparticles. In: Exposure assessment and safety considerations for working with engineered nanoparticles. John Wiley & Sons, Inc, pp 39–50Google Scholar
  18. European Parliament, Council of the European Union (2008) Directive 2008/50/EC on ambient air quality and cleaner air for Europe. Off J Eur Union 152:1–44 Google Scholar
  19. FAO/WHO [Food and Agriculture Organization of the United Nations/World Health Organization] (2010) FAO/WHO expert meeting on the application of nanotechnologies in the food and agriculture sectors: potential food safety implications: Meeting Report. p 130 ppGoogle Scholar
  20. Friends of the Earth U.S. (2016) Nano-particles in baby formula: Tiny new ingredients are a big concernGoogle Scholar
  21. Fröhlich E, Salar-Behzadi S (2014) Toxicological assessment of inhaled nanoparticles: role of in vivo, ex vivo, in vitro, and in silico studies. Int J Mol Sci 15:4795–4822CrossRefGoogle Scholar
  22. Gajdosechova Z, Lawan MM, Urgast DS, Raab A, Scheckel KG, Lombi E, Kopittke PM, Loeschner K, Larsen EH, Woods G, Brownlow A, Read FL, Feldmann J, Krupp EM (2016) In vivo formation of natural HgSe nanoparticles in the liver and brain of pilot whales. Sci Rep 6.
  23. Gatti AM (2004) Biocompatibility of micro- and nano-particles in the colon. Part II. Biomaterials 25:385–392. CrossRefGoogle Scholar
  24. Gatti AM, Bosco P, Rivasi F, Bianca S, Ettore G, Gaetti L, Montanari S, Bartoloni G, Gazzolo D (2011) Heavy metals nanoparticles in fetal kidney and liver tissues. Front Biosci (Elite Ed) 3:221–226CrossRefGoogle Scholar
  25. Gatti AM, Montanari S, Capitani F (2013) The Quirra syndrome: matter of translational medicine. NATO Sci peace Secur Ser B Phys Biophys 55–64.
  26. Gatti AM, Rivasi F (2002) Biocompatibility of micro- and nanoparticles. Part I: in liver and kidney. Biomaterials 23:2381–2387. CrossRefGoogle Scholar
  27. Gellein K, Flaten TP, Erikson KM, Aschner M, Syversen T (2008) Leaching of trace elements from biological tissue by formalin fixation. Biol Trace Elem Res 121:221–225. CrossRefGoogle Scholar
  28. Gray EP, Coleman JG, Bednar AJ, Kennedy AJ, Ranville JF, Higgins CP (2013) Extraction and analysis of silver and gold nanoparticles from biological tissues using single particle inductively coupled plasma mass spectrometry. Environ Sci Technol 47:14315–14323. CrossRefGoogle Scholar
  29. Griffin S, Masood M, Nasim M, Sarfraz M, Ebokaiwe A, Schäfer KH, Keck C, Jacob C (2017) Natural nanoparticles: a particular matter inspired by nature. Antioxidants 7:3. CrossRefGoogle Scholar
  30. Halamoda-Kenzaoui B, Ceridono M, Urbán P, Bogni A, Ponti J, Gioria S, Kinsner-Ovaskainen A (2017) The agglomeration state of nanoparticles can influence the mechanism of their cellular internalisation. J Nanobiotechnology 15:48. CrossRefGoogle Scholar
  31. Hansen SF, Sørensen SN, Skjolding LM et al (2017) Revising REACH guidance on information requirements and chemical safety assessment for engineered nanomaterials for aquatic ecotoxicity endpoints: recommendations from the EnvNano project. Environ Sci Eur 29:1–15CrossRefGoogle Scholar
  32. Heinzerling A, Hsu J, Yip F (2016) Respiratory health effects of ultrafine particles in children: a literature review. Water Air Soil Pollut 227Google Scholar
  33. Heringa MB, Peters RJB, Bleys RLAW, van der Lee MK, Tromp PC, van Kesteren PCE, van Eijkeren JCH, Undas AK, Oomen AG, Bouwmeester H (2018) Detection of titanium particles in human liver and spleen and possible health implications. Part Fibre Toxicol 15.
  34. Iannitti T, Capone S, Gatti A et al (2010) Intracellular heavy metal nanoparticle storage: progressive accumulation within lymph nodes with transformation from chronic inflammation to malignancy. Int J Nanomedicine 5:955–960. CrossRefGoogle Scholar
  35. Istituto Nazionale di Statistica (ISTAT) (2017) Tavole di dati. Ambiente urbano, anno 2016. In: 14 dec 2017Google Scholar
  36. Italian Authority for the Protection of Personal Data (2012) Autorizzazione generale al trattamento di dati personali effettuato per scopi di ricerca scientifica Gazzetta Ufficiale della Repubblica Serie Generale n. 72 del 26-3-2012, ItalyGoogle Scholar
  37. Katz S (2014) The chemistry and toxicology of depleted uranium. Toxics 2:50–78. CrossRefGoogle Scholar
  38. Khan I, Saeed K, Khan I (2017) Nanoparticles: properties, applications and toxicities. Arab J ChemGoogle Scholar
  39. Kreyling WG, Semmler-Behnke M, Möller W (2006) Health implications of nanoparticles. J Nanopart Res 8:543–562. CrossRefGoogle Scholar
  40. Kulvietis V, Zalgeviciene V, Didziapetriene J, Rotomskis R (2011) Transport of nanoparticles through the placental barrier. Tohoku J Exp Med 225:225–234. CrossRefGoogle Scholar
  41. Kumar M, Curtis A, Hoskins C (2018) Application of nanoparticle technologies in the combat against anti-microbial resistance. Pharmaceutics 10:11. CrossRefGoogle Scholar
  42. Kwon JT, Hwang SK, Jin H, Kim DS, Minai-Tehrani A, Yoon HJ, Choi M, Yoon TJ, Han DY, Kang YW, Yoon BI, Lee JK, Cho MH (2008) Body distribution of inhaled fluorescent magnetic nanoparticles in the mice. J Occup Health 50:1–6. CrossRefGoogle Scholar
  43. Li YF, Gao Y, Chai Z, Chen C (2014) Nanometallomics: an emerging field studying the biological effects of metal-related nanomaterials. Metallomics, InGoogle Scholar
  44. Liao J, Zhang Y, Yu W, Xu L, Ge C, Liu J, Gu N (2003) Linear aggregation of gold nanoparticles in ethanol. Colloids Surfaces A Physicochem Eng Asp 223:177–183. CrossRefGoogle Scholar
  45. Liu J, Wang Z, Liu FD, Kane AB, Hurt RH (2012) Chemical transformations of nanosilver in biological environments. ACS Nano 6:9887–9899. CrossRefGoogle Scholar
  46. Nguyen HL, Nguyen HN, Nguyen HH, Luu MQ, Nguyen MH (2014) Nanoparticles: synthesis and applications in life science and environmental technology. Adv Nat Sci Nanosci Nanotechnol 6:015008. CrossRefGoogle Scholar
  47. Noronha Oliveira M, Schunemann WVH, Mathew MT, Henriques B, Magini RS, Teughels W, Souza JCM (2018) Can degradation products released from dental implants affect peri-implant tissues? J Periodontal Res 53:1–11CrossRefGoogle Scholar
  48. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839CrossRefGoogle Scholar
  49. Oh N, Park JH (2014) Endocytosis and exocytosis of nanoparticles in mammalian cells. Int J Nanomedicine 9:51–63Google Scholar
  50. Pedata P, Garzillo EM, Sannolo N (2010) Ultrafine particles and effects on the body: review of the literature. G Ital Med Lav Erg 32:23–31Google Scholar
  51. Pietroiusti A (2012) Health implications of engineered nanomaterials. Nanoscale 4:1231. CrossRefGoogle Scholar
  52. Pulit-Prociak J, Banach M (2016) Silver nanoparticles—a material of the future.? Open Chem 14:76–91. CrossRefGoogle Scholar
  53. Ramachandran G (2011) Assessing nanoparticle risks to human healthCrossRefGoogle Scholar
  54. Rappoport J, Preece J, Chipman K (2011) How do manufactured nanoparticles enter cells? UK Mathematics-in-Medicine Study Group Reading, InGoogle Scholar
  55. Roncati L, Gatti AM, Pusiol T, Barbolini G, Maiorana A, Montanari S (2015) ESEM detection of foreign metallic particles inside ameloblastomatous cells. Ultrastruct Pathol 39:329–335. CrossRefGoogle Scholar
  56. Scott-Fordsmand JJ, Peijnenburg W, Semenzin E, Nowack B, Hunt N, Hristozov D, Marcomini A, Irfan MA, Jiménez AS, Landsiedel R, Tran L, Oomen A, Bos P, Hund-Rinke K (2017) Environmental risk assessment strategy for nanomaterials. Int J Environ Res Public Health 14:1251. CrossRefGoogle Scholar
  57. Shin S, Song I, Um S (2015) Role of physicochemical properties in nanoparticle toxicity. Nanomaterials 5:1351–1365. CrossRefGoogle Scholar
  58. Urban RM, Jacobs JJ, Tomlinson MJ et al (2000) Dissemination of wear particles to the liver, spleen, and abdominal lymph nodes of patients with hip or knee replacement. J Bone Joint Surg Am 82:457–476CrossRefGoogle Scholar
  59. Viana M, Fonseca AS, Querol X, López-Lilao A, Carpio P, Salmatonidis A, Monfort E (2017) Workplace exposure and release of ultrafine particles during atmospheric plasma spraying in the ceramic industry. Sci Total Environ 599–600:2065–2073. CrossRefGoogle Scholar
  60. Wichmann HE, Spix C, Tuch T, et al (2000) Daily mortality and fine and ultrafine particles in Erfurt, Germany part I: role of particle number and particle mass. Res Rep Heal Eff Inst 5–94Google Scholar
  61. Wong TY, Wu CY, Martel J, Lin CW, Hsu FY, Ojcius DM, Lin PY, Young JD (2015) Detection and characterization of mineralo-organic nanoparticles in human kidneys. Sci Rep 5.
  62. World Medical Association (2013) World medical association declaration of Helsinki. Ethical principles for medical research involving human subjects. J Am Med Assoc 310:2191–2194. CrossRefGoogle Scholar
  63. Wu CY, Young L, Young D, Martel J, Young JD (2013) Bions: a family of biomimetic mineralo-organic complexes derived from biological fluids. PLoS One 8:e75501. CrossRefGoogle Scholar
  64. Xia Z, Ricciardi BF, Liu Z, von Ruhland C, Ward M, Lord A, Hughes L, Goldring SR, Purdue E, Murray D, Perino G (2017) Nano-analyses of wear particles from metal-on-metal and non-metal-on-metal dual modular neck hip arthroplasty. Nanomedicine Nanotechnology, Biol Med 13:1205–1217. CrossRefGoogle Scholar
  65. Yang L, Kuang H, Zhang W, Aguilar ZP, Wei H, Xu H (2017) Comparisons of the biodistribution and toxicological examinations after repeated intravenous administration of silver and gold nanoparticles in mice. Sci Rep 7:3303. CrossRefGoogle Scholar
  66. Zhou Y, Peng Z, Seven ES, Leblanc RM (2018) Crossing the blood-brain barrier with nanoparticles. J Control Release 270:290–303CrossRefGoogle Scholar
  67. Zoroddu MA, Medici S, Ledda A, Nurchi V, Lachowicz J, Peana M (2014) Toxicity of nanoparticles. Curr Med Chem 21:3837–3853CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Emanuela Locci
    • 1
  • Ilaria Pilia
    • 1
    Email author
  • Roberto Piras
    • 1
  • Sergio Pili
    • 1
  • Gabriele Marcias
    • 1
  • Pierluigi Cocco
    • 1
  • Fabio De Giorgio
    • 2
  • Manuele Bernabei
    • 3
  • Valentina Brusadin
    • 3
  • Laura Allegrucci
    • 3
  • Alessandra Bandiera
    • 3
  • Ernesto d’Aloja
    • 1
  • Enrico Sabbioni
    • 4
    • 5
  • Marcello Campagna
    • 1
  1. 1.Department of Medical Sciences and Public HealthUniversity of CagliariCagliariItaly
  2. 2.Institute of Public Health, School of MedicineCatholic UniversityRomeItaly
  3. 3.Chemical Department, Experimental Flight CentreAirport “M. De Bernardi”, Pratica di Mare AFBRomeItaly
  4. 4.CeSI-Aging Research CenterG. d’Annunzio University FoundationChietiItaly
  5. 5.LASAUniversity of Studies of Milan and INFN-MilanMilanItaly

Personalised recommendations