Advertisement

RCQDs @ Ag/VOx nanorods for enhanced visible-light photocatalytic activity

  • Ran Wang
  • Bing Liu
  • Mengping Liu
  • Jingfeng Yang
  • Lihong TianEmail author
Research Paper
  • 52 Downloads

Abstract

Carbon quantum dots, a new class of carbon nanomaterials, have attracted increasing attention in photocatalytic field, due to their excellent physical and photochemical properties. In this work, carbon quantum dots with abundant of surface hydroxyl/aldehyde groups reduce silver ion and partial vanadate to induce the formation of carbon quantum dots (CQDs) @ Ag/VOx nanorods in a mild hydrothermal condition. HRTEM graphs show that VOx nanorods are composed of VOx particles, and CQDs @ Ag cover the surface of nanorods or intercalates in the small voids between VOx particles. After further reduction of some residual Ag+ and oxygen-containing groups on CQDs surface by NaBH4, RCQDs @ Ag/VOx nanorods display a high photocatalytic activity on degrading the organic dyes under visible light, attributed to their unique one-dimensional structure and the synergistic effect of RCQDs and Ag nanoparticles on improving the light absorbance and hindering the recombination of electrons and holes.

Keywords

Vanadium oxides Photocatalysis Carbon quantum dots Nanorods 

Notes

Funding information

This work was supported by the National Natural Science Foundation of China (no. 51302072, 51872081).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11051_2019_4477_MOESM1_ESM.docx (386 kb)
ESM 1 (DOCX 386 kb)

References

  1. Asim N, Radiman S, Yarmo MA, Golriz MB (2009) Vanadium pentoxide: synthesis and characterization of nanorod and nanoparticle V2O5, using CTAB micelle solution. Microporous Mesoporous Mater 120:397–401.  https://doi.org/10.1016/j.micromeso.2008.12.013 CrossRefGoogle Scholar
  2. Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed 49:6726–6744.  https://doi.org/10.1002/anie.200906623 CrossRefGoogle Scholar
  3. Braithwaite JS, Catlow CRA, Harding JH, Gale JD (2001) A theoretical study of lithium intercalation into V6O13—a combined classical, quantum mechanical approach. Phys Chem Chem Phys 3:4052–4059.  https://doi.org/10.1039/b103928h CrossRefGoogle Scholar
  4. Burcham LJ, Deo G, Gao X, Wachs IE (2000) In situ IR, Raman, and UV-vis DRS spectroscopy of supported vanadium oxide catalysts during methanol oxidation. Top Catal 11:85–100.  https://doi.org/10.1023/A:1027275225668 CrossRefGoogle Scholar
  5. Cao S, Li Y, Zhu B, Jaroniec M, Yu J (2017) Facet effect of Pd cocatalyst on photocatalytic CO2 reduction over g-C3N4. J Catal 349:208–217.  https://doi.org/10.1016/j.jcat.2017.02.005 CrossRefGoogle Scholar
  6. Chen YC, Liu TC, Hsu YJ (2015) ZnSe·0.5N2H4 hybrid nanostructures: a promising alternative photocatalyst for solar conversion. ACS Appl Mater Interfaces 7:1616–1623.  https://doi.org/10.1021/am507085u CrossRefGoogle Scholar
  7. De B, Karak N (2017) Recent progress in carbon dot-metal based nanohybrids for photochemical and electrochemical applications. J Mater Chem A 5:1826–1859.  https://doi.org/10.1039/c6ta10220d CrossRefGoogle Scholar
  8. Di J, Xia J, Ji M, Xu L, Yin S, Zhang Q, Chen Z, Li H (2016) Carbon quantum dots in situ coupling to bismuth oxyiodide via reactable ionic liquid with enhanced photocatalytic molecular oxygen activation performance. Carbon 98:613–623.  https://doi.org/10.1016/j.carbon.2015.11.015 CrossRefGoogle Scholar
  9. Ding YL, Wen Y, Wu C, van Aken PA, Maier J, Yu Y (2015) 3D V6O13 nanotextiles assembled from interconnected nanogrooves as cathode materials for high-energy lithium ion batteries. Nano Lett 15:1388–1394.  https://doi.org/10.1021/nl504705z CrossRefGoogle Scholar
  10. El-Roz M, Lakiss L, Telegeiev I, Lebedev OI, Bazin P, Vicente A, Fernandez C, Valtchev V (2017) High-visible-light photoactivity of plasma-promoted vanadium clusters on nanozeolites for partial photooxidation of methanol. ACS Appl Mater Interfaces 9:17846–17855.  https://doi.org/10.1021/acsami.7b02161 CrossRefGoogle Scholar
  11. Eremia SAV, Chevalier-Lucia D, Radu G, Marty J (2008) Optimization of hydroxyl radical formation using TiO2 as photocatalyst by response surface methodology. Talanta 77:858–862.  https://doi.org/10.1016/j.talanta.2008.07.056 CrossRefGoogle Scholar
  12. Fu X, Tang W, Ji L, Chen S (2012) V2O5/Al2O3 composite photocatalyst: preparation, characterization, and the role of Al2O3. Chem Eng J 180:170–177.  https://doi.org/10.1016/j.cej.2011.11.032 CrossRefGoogle Scholar
  13. Han F, Kambala VSR, Srinivasan M, Rajarathnam D, Naidu R (2009) Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: a review. Appl Catal A Gen 359:25–40.  https://doi.org/10.1016/j.apcata.2009.02.043 CrossRefGoogle Scholar
  14. Hong Y, Jiang Y, Li C, Fan W, Yan X, Yan M, Shi W (2016) In-situ synthesis of direct solid-state Z-scheme V2O5/g-C3N4 heterojunctions with enhanced visible light efficiency in photocatalytic degradation of pollutants. Appl Catal B Environ 180:663–673.  https://doi.org/10.1016/j.apcatb.2015.06.057 CrossRefGoogle Scholar
  15. Jeong HK, Lee YP, Jin MH, Kim ES, Bae JJ, Lee YH (2009) Thermal stability of graphite oxide. Chem Phys Lett 470:255–258.  https://doi.org/10.1016/j.cplett.2009.01.050 CrossRefGoogle Scholar
  16. Jiang B, Peng X, Qu Y, Wang H, Tian C, Pan Q, Li M, Zhou W, Fu H (2014) A new combustion route to synthesize mixed valence vanadium oxide heterojunction composites as visible-light-driven photocatalysts. Chemcatchem 6:2553–2559.  https://doi.org/10.1002/cctc.201402336 CrossRefGoogle Scholar
  17. Jing L, Qu Y, Wang B, Li S, Jiang B, Yang L, Fu W, Fu H, Sun J (2006) Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Sol Energy Mater Sol Cells 90:1773–1787.  https://doi.org/10.1016/j.solmat.2005.11.007 CrossRefGoogle Scholar
  18. Kajita S, Yoshida T, Ohno N, Ichino Y, Yoshida N (2018) Fabrication of photocatalytically active vanadium oxide nanostructures via plasma route. J Phys D Appl Phys 51:215201.  https://doi.org/10.1088/1361-6463/aabe44 CrossRefGoogle Scholar
  19. Katzke H, Tolédano P, Depmeier W (2003) Theory of morphotropic transformations in vanadium oxides. Phys Rev B 68:366–369.  https://doi.org/10.1103/PhysRevB.68.024109 CrossRefGoogle Scholar
  20. Khodakov A, Olthof B, Bell AT, Iglesia E (1999) Structure and catalytic properties of supported vanadium oxides: support effects on oxidative dehydrogenation reactions. J Catal 181:205–216.  https://doi.org/10.1006/jcat.1998.2295 CrossRefGoogle Scholar
  21. Kim HT, Chae BG, Youn DH, Maeng SL, Kim G, Kang KY, Lim YS (2004) Mechanism and observation of Mott transition in VO2-based two-and three-terminal devices. New J Phys 6:52.  https://doi.org/10.1088/1367-2630/6/1/052 CrossRefGoogle Scholar
  22. Kundu S, Satpati B, Kar T, Pradhan SK (2017) Microstructure characterization of hydrothermally synthesized PANI/V2O5 nH2O heterojunction photocatalyst for visible light induced photodegradation of organic pollutants and non-absorbing colorless molecules. J Hazard Mater 339:161–173.  https://doi.org/10.1016/j.jhazmat.2017.06.034 CrossRefGoogle Scholar
  23. Li B, Xu Y, Rong G, Jing M, Xie Y (2006) Vanadium pentoxide nanobelts and nanorolls: from controllable synthesis to investigation of their electrochemical properties and photocatalytic activities. Nanotechnology 17:2560–2566.  https://doi.org/10.1088/0957-4484/17/10/020 CrossRefGoogle Scholar
  24. Li H, Kang Z, Liu Y, Lee ST (2012) Carbon nanodots: synthesis, properties and applications. J Mater Chem 22:24230–24253.  https://doi.org/10.1039/c2jm34690g CrossRefGoogle Scholar
  25. Lim SY, Shen W, Gao Z (2015) Carbon quantum dots and their applications. Chem Soc Rev 44:362–381.  https://doi.org/10.1039/c4cs00269e CrossRefGoogle Scholar
  26. Liu R, Huang H, Li H, Liu Y, Zhong J, Li Y, Zhang S, Kang Z (2013) Metal nanoparticle/carbon quantum dot composite as a photocatalyst for high-efficiency cyclohexane oxidation. ACS Catal 4:328–336.  https://doi.org/10.1021/cs400913h CrossRefGoogle Scholar
  27. Liu M, Su B, Tang Y, Jiang X, Yu A (2017) Recent advances in nanostructured vanadium oxides and composites for energy conversion. Adv Energy Mater 7:1700885.  https://doi.org/10.1002/aenm.201700885 CrossRefGoogle Scholar
  28. Masetti E, Varsano F, Decker F, Krasilnikova A (2001) Sputter deposited cerium-vanadium oxide: optical characterization and electrochromic behavior. Electrochim Acta 46:2085–2090.  https://doi.org/10.1016/S0013-4686(01)00410-8 CrossRefGoogle Scholar
  29. Mjejri I, Rougier A, Gaudon M (2017) Low-cost and facile synthesis of the vanadium oxides V2O3, VO2, and V2O5 and their magnetic, thermochromic and electrochromic properties. Inorg Chem 56:1734–1741.  https://doi.org/10.1021/acs.inorgchem.6b02880 CrossRefGoogle Scholar
  30. Moon IK, Lee J, Ruoff RS, Lee H (2010) Reduced graphene oxide by chemical graphitization. Nat Commun 1(73):1–6.  https://doi.org/10.1038/ncomms1067 CrossRefGoogle Scholar
  31. O’Dwyer C, Lavayen V, Tanner DA, Newcomb SB, Benavente E, González G, Torres CMS (2009) Reduced surfactant uptake in three dimensional assemblies of VOx nanotubes improves reversible Li+ intercalation and charge capacity. Adv Funct Mater 19:1736–1745.  https://doi.org/10.1002/adfm.200801107 CrossRefGoogle Scholar
  32. Pan J, Sheng Y, Zhang J, Wei J, Huang P, Zhang X, Feng B (2014) Preparation of carbon quantum dots / TiO2 nanotubes composites and their visible light catalytic applications. J Mater Chem A 2:18082–18086.  https://doi.org/10.1039/c4ta03528c CrossRefGoogle Scholar
  33. Pan J, Sheng Y, Zhang J, Huang P, Zhang X, Feng B (2015) Photovoltaic conversion enhancement of a carbon quantum dots/p-type CuAlO2/n-type ZnO photoelectric device. ACS Appl Mater Interfaces 7:7878–7883.  https://doi.org/10.1021/acsami.5b00868 CrossRefGoogle Scholar
  34. Shanmugam M, Alsalme A, Alghamdi A, Jayavel R (2015) Enhanced photocatalytic performance of the graphene-V2O5 nanocomposite in the degradation of methylene blue dye under direct sunlight. ACS Appl Mater Interfaces 7:14905–14911.  https://doi.org/10.1021/acsami.5b02715 CrossRefGoogle Scholar
  35. Sharma M, Das B, Sarmah JC, Hazarika A, Deka BK, Park YB, Bania KK (2017) Fractal to monolayer growth of AgCl and Ag/AgCl nanoparticles on vanadium oxides (VOx) for visible-light photocatalysis. J Mater Chem A 5:16953–16963.  https://doi.org/10.1039/c7ta03321d CrossRefGoogle Scholar
  36. Silversmit G, Depla D, Poelman H, Marin GB, De Gryse R (2004) Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+). J Electron Spectrosc Relat Phenom 135:167–175.  https://doi.org/10.1016/j.elspec.2004.03.004 CrossRefGoogle Scholar
  37. Taha AA, Hriez AA, Wu Y, Wang H, Li F (2014) Direct synthesis of novel vanadium oxide embedded porous carbon nanofiber decorated with iron nanoparticles as a low-cost and highly efficient visible-light-driven photocatalyst. J Colloid Interface Sci 417:199–205.  https://doi.org/10.1016/j.jcis.2013.11.015 CrossRefGoogle Scholar
  38. WeberR S (1995) Effect of local structure on the UV-visible absorption edges of molybdenum oxide clusters and supported molybdenum oxides. J Catal 151:470–474.  https://doi.org/10.1006/jcat.1995.1052 CrossRefGoogle Scholar
  39. Wu JM, Chang WE (2014) Ultrahigh responsivity and external quantum efficiency of an ultraviolet-light photodetector based on a single VO2 microwire. ACS Appl Mater Interfaces 6:14286–14292.  https://doi.org/10.1021/am503598g CrossRefGoogle Scholar
  40. Wu C, Feng F, Xie Y (2013) Design of vanadium oxide structures with controllable electrical properties for energy applications. Chem Soc Rev 42:5157–5183.  https://doi.org/10.1039/C3CS35508J CrossRefGoogle Scholar
  41. Wu XF, Li H, Sun Y, Wang YJ, Zhang CX, Su JZ, Zhang JR, Yang FF, Zhang Y, Pan JC (2017a) Synthesis of SnS2/few layer boron nitride nanosheets composites as a novel material for visible-light-driven photocatalysis. Appl Phys A Mater 123(709).  https://doi.org/10.1007/s00339-017-1286-6
  42. Wu XF, Zhao ZH, Sun Y, Li H, Zhang CX, Wang YJ, Liu Y, Wang YD, Yang XY, Gong XD (2017b) Preparation and characterization of Ag2CrO4/few layer boron nitride hybrids for visible-light-driven photocatalysis. J Nanopart Res 19(193).  https://doi.org/10.1007/s11051-017-3892-9
  43. Wu XF, Sun Y, Li H, Wang YJ, Zhang CX, Zhang JR, Su JZ, Wang YW, Zhang Y, Wang C, Zhang M (2018) In-situ synthesis of novel p-n heterojunction of Ag2CrO4-Bi2Sn2O7 hybrids for visible-light-driven photocatalysis. J Alloys Compd 740:1197–1203.  https://doi.org/10.1016/j.jallcom.2018.01.100 CrossRefGoogle Scholar
  44. Xu X, Tang W, Zhou Y, Bao Z, Su Y, Hu J, Zeng H (2017) Steering photoelectrons excited in carbon dots into platinum cluster catalyst for solar-driven hydrogen production. Adv Sci 4:1700273.  https://doi.org/10.1002/advs.201700273 CrossRefGoogle Scholar
  45. Yu H, Zhang H, Huang H, Liu Y, Li H, Ming H, Kang Z (2012) ZnO/carbon quantum dots nanocomposites: one-step fabrication and superior photocatalytic ability for toxic gas degradation under visible light at room temperature. New J Chem 36:1031–1035.  https://doi.org/10.1039/c2nj20959d CrossRefGoogle Scholar
  46. Zavahir S, Xiao Q, Sarina S, Zhao J, Bottle S, Wellard M, Jia JF, Ling LQ, Huang Y, Blinco JP, Wu H, Zhu HY (2016) Selective oxidation of aliphatic alcohols using molecular oxygen at ambient temperature: mixed-valence vanadium oxide photocatalysts. ACS Catal 6:3580–3588.  https://doi.org/10.1021/acscatal.6b00753 CrossRefGoogle Scholar
  47. Zhang H, Ming H, Lian S, Huang H, Li H, Zhang L, Liu Y, Kang Z, Lee ST (2011a) Fe2O3/carbon quantum dots complex photocatalysts and their enhanced photocatalytic activity under visible light. Dalton Trans 40:10822–10825.  https://doi.org/10.1039/c1dt11147g CrossRefGoogle Scholar
  48. Zhang P, Shao C, Zhang Z, Zhang M, Mu J, Guo Z, Liu Y (2011b) In situ assembly of well-dispersed Ag nanoparticles (Ag NPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol. Nanoscale 3:3357–3363.  https://doi.org/10.1039/c1nr10405e CrossRefGoogle Scholar
  49. Zhang H, Huang H, Ming H, Li H, Zhang L, Liu Y, Kang Z (2012) Carbon quantum dots/Ag3PO4 complex photocatalysts with enhanced photocatalytic activity and stability under visible light. J Mater Chem 22:10501–10506.  https://doi.org/10.1039/c2jm30703k CrossRefGoogle Scholar
  50. Zhang F, Zhang Y, Zhou C, Yang Z, Xue H, Dionysiou DD (2017) A new high efficiency visible-light photocatalyst made of SnS2 and conjugated derivative of polyvinyl alcohol and its application to Cr (VI) reduction. Chem Eng J 324:140–153.  https://doi.org/10.1016/j.cej.2017.05.009 CrossRefGoogle Scholar
  51. Zhou X, Wu J, Li Q, Qi Y, Ji Z, He P, Ren J (2017) Improved electron-hole separation and migration in V2O5 / rutile-anatase photocatalyst system with homo-hetero junctions and its enhanced photocatalytic performance. Chem Eng J 330:294–308.  https://doi.org/10.1016/j.cej.2017.07.146 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Ran Wang
    • 1
  • Bing Liu
    • 1
  • Mengping Liu
    • 1
  • Jingfeng Yang
    • 1
  • Lihong Tian
    • 1
    Email author
  1. 1.Hubei Collaborative Innovation Center for Advanced Organochemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Applications of Organic Functional MoleculesHubei UniversityWuhanChina

Personalised recommendations