Advertisement

Facile synthesis of foamed-nickel supporting MnO2 as binder-less electrodes for high electrochemical performance supercapacitors

  • Haiyan Li
  • Jiasheng Zu
  • Siqi Zhang
  • Jianbo ZhuEmail author
  • Jiaojiao Liu
  • Youlong XuEmail author
Research Paper
  • 15 Downloads

Abstract

The current challenge of the still poor electronic conductivity is one of the major bottlenecks to obtain the large reversible capacitance and rapid rate capability for MnO2-based supercapacitor electrodes. Herein, we report the synthesis of a binder-less Ni/MnO2 electrode with hierarchical MnO2 nanosheets anchoring on the foamed-Ni support frameworks, and the mass loadings of MnO2 on the foamed-Ni and the nanostructural morphology are optimized to enhance its electrochemical performance. Such hierarchical nanosheet structure of MnO2 can improve its electrolyte-accessible surface area and the foamed-Ni framework can effectively enhance its electronic conductivity, which can be beneficial to improve its capacitance and rate capability. The Ni/MnO2 electrodes reveal an areal capacitance of 2.31 F cm−2 at the current density of 1 mA cm−2, which can maintain 1.48 F cm−2 (64.1%) at 20 mA cm−2, exhibiting high capacitance and excellent rate capability. Moreover, the Ni/MnO2 electrode-based supercapacitor exhibits a superior energy density of 160.1 mWh cm−2 and an outstanding cycling stability of 86.8% capacitance retention after 9000 cycles, indicating that such binder-less Ni/MnO2 offers a promising electrode material for the high-performance supercapacitor.

Graphical abstract

Keywords

Foamed-Ni supporting MnO2 Supercapacitor Binder-less Enhanced electrochemical performance Nanosheets Nanomaterial optimization 

Notes

Funding

This study is financially supported by the Natural Science Foundation of Shaanxi Province (Grant No. 2017JQ2018), Natural Science Foundation of Shaanxi Provincial Education Department (Grant No. 17JK0781), and Undergraduate Platform for Innovation and Entrepreneurship Training Program of Shaanxi Province (Grant No. 201807112).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11051_2019_4474_MOESM1_ESM.docx (1.8 mb)
ESM 1 (DOCX 1871 kb)

References

  1. Attias R, Sharon D, Borenstein A, Malka D, Hana O, Luski S, Aurbach D (2017) Asymmetric supercapacitors using chemically prepared MnO2 as positive electrode materials. J Electrochem Soc 164(9):A2231–A2237.  https://doi.org/10.1149/2.0161712jes CrossRefGoogle Scholar
  2. Bag S, Raj CR (2016a) Hierarchical three-dimensional mesoporous MnO2 nanostructures for high performance aqueous asymmetric supercapacitors. J Mater Chem A 4(2):587–595.  https://doi.org/10.1039/c5ta08426a CrossRefGoogle Scholar
  3. Bag S, Raj CR (2016b) Facile shape-controlled growth of hierarchical mesoporous delta-MnO2 for the development of asymmetric supercapacitors. J Mater Chem A 4(21):8384–8394.  https://doi.org/10.1039/c6ta01879c CrossRefGoogle Scholar
  4. Béguin F, Presser V, Balducci A, Frackowiak E (2014) Carbons and electrolytes for advanced supercapacitors. Adv Mater 26(14):2219–2251.  https://doi.org/10.1002/celc.201402091 CrossRefGoogle Scholar
  5. Chen H, Zeng S, Chen M, Zhang Y, Zheng L, Li Q (2016) Oxygen evolution assisted fabrication of highly loaded carbon nanotube/MnO2 hybrid films for high-performance flexible pseudosupercapacitors. Small 12(15):2035–2045.  https://doi.org/10.1002/smll.201503623 CrossRefGoogle Scholar
  6. Fic K, Platek A, Piwek J, Frackowiak E (2018) Sustainable materials for electrochemical capacitors. Mater Today 21(4):437–454.  https://doi.org/10.1016/j.mattod.2018.03.005 CrossRefGoogle Scholar
  7. Gao Y-P, Wu X, Huang K-J, Xing L-L, Zhang Y-Y, Liu L (2017) Two-dimensional transition metal diseleniums for energy storage application: a review of recent developments. Crystengcomm 19(3):404–418.  https://doi.org/10.1039/c6ce02223e CrossRefGoogle Scholar
  8. Genc R, Alas MO, Harputlu E, Repp S, Kremer N, Castellano M, Colak SG, Ocakoglu K, Erdem E (2017) High-capacitance hybrid supercapacitor based on multi-colored fluorescent carbon-dots. Sci Rep 7.  https://doi.org/10.1038/s41598-017-11347-1
  9. Ghidiu M, Lukatskaya MR, Zhao M-Q, Gogotsi Y, Barsoum MW (2014) Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516(7529):78–U171.  https://doi.org/10.1038/nature13970 CrossRefGoogle Scholar
  10. Ghosh K, Yue CY, Sk MM, Jena RK (2017) Development of 3D urchin-shaped coaxial manganese dioxide@polyaniline (MnO2@PANI) composite and self-assembled 3D pillared graphene foam for asymmetric all-solid-state flexible supercapacitor application. ACS Appl Mater Interfaces 9(18):15350–15363.  https://doi.org/10.1021/acsami.6b16406 CrossRefGoogle Scholar
  11. Gonzalez A, Goikolea E, Andoni Barrena J, Mysyk R (2016) Review on supercapacitors: technologies and materials. Renew Sust Energ Rev 58:1189–1206.  https://doi.org/10.1016/j.rser.2015.12.249 CrossRefGoogle Scholar
  12. Grote F, Lei Y (2014) A complete three-dimensionally nanostructured asymmetric supercapacitor with high operating voltage window based on PPy and MnO2. Nano Energy 10:63–70.  https://doi.org/10.1016/j.nanoen.2014.08.019 CrossRefGoogle Scholar
  13. Gueon D, Moon JH (2017) MnO2 nanoflake-shelled carbon nanotube particles for high-performance supercapacitors. ACS Sustain Chem Eng 5(3):2445–2453.  https://doi.org/10.1021/acssuschemeng.6b02803 CrossRefGoogle Scholar
  14. Huang Z-H, Song Y, Feng D-Y, Sun Z, Sun X, Liu X-X (2018) High mass loading MnO2 with hierarchical nanostructures for supercapacitors. ACS Nano 12(4):3557–3567.  https://doi.org/10.1021/acsnano.8b00621 CrossRefGoogle Scholar
  15. Kazazi M (2018) Effect of electrodeposition current density on the morphological and pseudocapacitance characteristics of porous nano-spherical MnO2 electrode. Ceram Int 44(9):10863–10870.  https://doi.org/10.1016/j.ceramint.2018.03.138 CrossRefGoogle Scholar
  16. Khan AH, Ghosh S, Pradhan B, Dalui A, Shrestha LK, Acharya S, Ariga K (2017) Two-dimensional (2D) nanomaterials towards electrochemical nanoarchitectonics in energy-related applications. Bull Chem Soc Jpn 90(6):627–648.  https://doi.org/10.1246/bcsj.20170043 CrossRefGoogle Scholar
  17. Kohler T, Armbruster T, Libowitzky E (1997) Hydrogen bonding and Jahn–teller distortion in groutite, α-MnOOH, and manganite, γ-MnOOH, and their relations to the manganese dioxides ramsdellite and pyrolusite. J Solid State Chem 133(2):486–500.  https://doi.org/10.1006/jssc.1997.7516 CrossRefGoogle Scholar
  18. Li P, Yang Y, Shi E, Shen Q, Shang Y, Wu S, Wei J, Wang K, Zhu H, Yuan Q, Cao A, Wu D (2014) Core-double-shell, carbon nanotube@polypyrrole@MnO2 sponge as freestanding, compressible supercapacitor electrode. ACS Appl Mater Interfaces 6(7):5228–5234.  https://doi.org/10.1021/am500579c CrossRefGoogle Scholar
  19. Liu Y, Hu M, Zhang M, Peng L, Wei H, Gao Y (2017) Facile method to prepare 3D foam-like MnO2 film/multilayer graphene film/Ni foam hybrid structure for flexible supercapacitors. J Alloys Compd 696:1159–1167.  https://doi.org/10.1016/j.jallcom.2016.12.097 CrossRefGoogle Scholar
  20. Nakayama M, Osae S, Kaneshige K, Komine K, Abe H (2016) Direct growth of birnessite-type MnO2 on treated carbon cloth for a flexible asymmetric supercapacitor with excellent cycling stability. J Electrochem Soc 163(10):A2340–A2348.  https://doi.org/10.1149/2.1031610jes CrossRefGoogle Scholar
  21. Noh J, Yoon C-M, Kim YK, Jang J (2017) High performance asymmetric supercapacitor twisted from carbon fiber/MnO2 and carbon fiber/MoO3. Carbon 116:470–478.  https://doi.org/10.1016/j.carbon.2017.02.033 CrossRefGoogle Scholar
  22. Patil B, Ahn S, Yu S, Song H, Jeong Y, Kim JH, Ahn H (2018) Electrochemical performance of a coaxial fiber-shaped asymmetric supercapacitor based on nanostructured MnO2/CNT-web paper and Fe2O3/carbon fiber electrodes. Carbon 134:366–375.  https://doi.org/10.1016/j.carbon.2018.03.080 CrossRefGoogle Scholar
  23. Peng L, Peng X, Liu B, Wu C, Xie Y, Yu G (2013) Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. Nano Lett 13(5):2151–2157.  https://doi.org/10.1021/nl400600x CrossRefGoogle Scholar
  24. Prehal C, Koczwara C, Jaeckel N, Schreiber A, Burian M, Amenitsch H, Hartmann MA, Presser V, Paris O (2017) Quantification of ion confinement and desolvation in nanoporous carbon supercapacitors with modelling and in situ X-ray scattering. Nat Energy 2(3).  https://doi.org/10.1038/nenergy.2016.215
  25. Rafique A, Massa A, Fontana M, Bianco S, Chiodoni A, Pirri CF, Hernandez S, Lambertit A (2017) Highly uniform anodically deposited film of MnO2 nanoflakes on carbon fibers for flexible and wearable fiber-shaped supercapacitors. ACS Appl Mater Interfaces 9(34):28386–28393.  https://doi.org/10.1021/acsami.7b06311 CrossRefGoogle Scholar
  26. Rakhi RB, Ahmed B, Anjum D, Alshareef HN (2016) Direct chemical synthesis of MnO2 nanowhiskers on transition metal carbide surfaces for supercapacitor applications. ACS Appl Mater Interfaces 8(29):18806–18814.  https://doi.org/10.1021/acsami.6b04481 CrossRefGoogle Scholar
  27. Repp S, Harputlu E, Gurgen S, Castellano M, Kremer N, Pompe N, Woerner J, Hoffmann A, Thomann R, Emen FM, Weber S, Ocakoglu K, Erdem E (2018) Synergetic effects of Fe3+ doped spinel Li4Ti5O12 nanoparticles on reduced graphene oxide for high surface electrode hybrid supercapacitors. Nanoscale 10(4):1877–1884.  https://doi.org/10.1039/c7nr08190a CrossRefGoogle Scholar
  28. Rossouw MH, Liles DC, Thackeray MM, David WIF, Hull S (1992) Alpha manganese dioxide for lithium batteries: a structural and electrochemical study. Mater Res Bull 27(2):221–230.  https://doi.org/10.1016/0025-5408(92)90216-M CrossRefGoogle Scholar
  29. Song Y, Liu T, Yao B, Li M, Kou T, Huang Z-H, Feng D-Y, Wang F, Tong Y, Liu X-X, Li Y (2017) Ostwald ripening improves rate capability of high mass loading manganese oxide for supercapacitors. Acs Energy Letters 2(8):1752–1759.  https://doi.org/10.1021/acsenergylett.7000405 CrossRefGoogle Scholar
  30. Stoller MD, Park SJ, Zhu YW, An JH, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8(10):3498–3502.  https://doi.org/10.1021/nl802558y CrossRefGoogle Scholar
  31. Sumboja A, Foo CY, Wang X, Lee PS (2013) Large areal mass, flexible and free-standing reduced graphene oxide/manganese dioxide paper for asymmetric supercapacitor device. Adv Mater 25(20):2809–2815.  https://doi.org/10.1002/adma.201205064 CrossRefGoogle Scholar
  32. Taberna PL, Simon P, Fauvarque JF (2003) Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J Electrochem Soc 150(3):A292–A300.  https://doi.org/10.1149/1.1543948 CrossRefGoogle Scholar
  33. Tang Y, Zhu J, Yang C, Wang F (2016) Enhanced supercapacitive performance of manganese oxides doped two-dimensional titanium carbide nanocomposite in alkaline electrolyte. J Alloys Compd 685:194–201.  https://doi.org/10.1016/j.jallcom.2016.05.221 CrossRefGoogle Scholar
  34. Wang J-G, Kang F, Wei B (2015) Engineering of MnO2-based nanocomposites for high-performance supercapacitors. Prog Mater Sci 74:51–124.  https://doi.org/10.1016/j.pmatsci.2015.04.003 CrossRefGoogle Scholar
  35. Wang L, Huang M, Chen S, Kang L, He X, Lei Z, Shi F, Xu H, Liu Z-H (2017a) Delta-MnO2 nanofiber/single-walled carbon nanotube hybrid film for all-solid-state flexible supercapacitors with high performance. J Mater Chem A 5(36):19107–19115.  https://doi.org/10.1039/c7ta04712f CrossRefGoogle Scholar
  36. Wang Y, Lai W, Wang N, Jiang Z, Wang X, Zou P, Lin Z, Fan HJ, Kang F, Wong C-P, Yang C (2017b) A reduced graphene oxide/mixed-valence manganese oxide composite electrode for tailorable and surface mountable supercapacitors with high capacitance and super-long life. Energy Environ Sci 10(4):941–949.  https://doi.org/10.1039/c6ee03773a CrossRefGoogle Scholar
  37. Xia Y, Mathis TS, Zhao M-Q, Anasori B, Dang A, Zhou Z, Cho H, Gogotsi Y, Yang S (2018) Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature 557 (7705):409−+. doi: https://doi.org/10.1038/s41586-018-0109-z
  38. Xu H, Hu X, Yang H, Sun Y, Hu C, Huang Y (2015) Flexible asymmetric micro-supercapacitors based on Bi2O3 and MnO2 nanoflowers: larger areal mass promises higher energy density. Adv Energy Mater 5(6).  https://doi.org/10.1002/aenm.201401882
  39. Yang G, Park S-J (2018) MnO2 and biomass-derived 3D porous carbon composites electrodes for high performance supercapacitor applications. J Alloys Compd 741:360–367.  https://doi.org/10.1016/j.jallcom.2018.01.108 CrossRefGoogle Scholar
  40. Yang P, Xiao X, Li Y, Ding Y, Qiang P, Tan X, Mai W, Lin Z, Wu W, Li T, Jin H, Liu P, Zhou J, Wong CP, Wang ZL (2013) Hydrogenated ZnO core-shell nanocables for flexible supercapacitors and self-powered systems. ACS Nano 7(3):2617–2626.  https://doi.org/10.1021/nn306044d CrossRefGoogle Scholar
  41. Ye Z, Li T, Ma G, Peng X, Zhao J (2017) Morphology controlled MnO2 electrodeposited on carbon fiber paper for high-performance supercapacitors. J Power Sources 351:51–57.  https://doi.org/10.1016/j.jpowsour.2017.03.104 CrossRefGoogle Scholar
  42. Yu D, Zhang Z, Yn M, Teng Y, Wu Y, Zhang X, Sun Q, Tong W, Zhao X, Liu X (2018) The synthesis of hierarchical ZnCo2O4@MnO2 core-shell nanosheet arrays on Ni foam for high-performance all-solid-state asymmetric supercapacitors. Energy Technol 5(3):597–604.  https://doi.org/10.1039/c7qi00706j CrossRefGoogle Scholar
  43. Zhang J, Zhang X, Liu Z, Zheng J, Zuo Y, Xue C, Li C, Cheng B, Wang Q (2018a) MnO2 nanoflowers and reduced graphene oxide 3D composites for ultrahigh-energy-density asymmetric supercapacitors. Inorg Chem Front 6(4):737–743.  https://doi.org/10.1002/ente.201700568 CrossRefGoogle Scholar
  44. Zhang Q-Z, Zhang D, Miao Z-C, Zhang X-L, Chou S-L (2018b) Research progress in MnO2-carbon based supercapacitor electrode materials. Small 14(24):e1702883–e1702883.  https://doi.org/10.1002/smll.201702883 CrossRefGoogle Scholar
  45. Zhu B, Tang S, Vongehr S, Xie H, Meng X (2016a) Hierarchically MnO2-nanosheet covered submicrometer-FeCo2O4-tube forest as binder-free electrodes for high energy density all-solid-state supercapacitors. ACS Appl Mater Interfaces 8(7):4762–4770.  https://doi.org/10.1021/acsami.5b11367 CrossRefGoogle Scholar
  46. Zhu J, Feng T, Du X, Wang J, Hu J, Wei L (2017) High performance asymmetric supercapacitor based on polypyrrole/graphene composite and its derived nitrogen-doped carbon nano-sheets. J Power Sources 346:120–127.  https://doi.org/10.1016/j.jpowsour.2017.02.034 CrossRefGoogle Scholar
  47. Zhu J, Xu Y (2018) Enhanced electrochemical performance of polypyrrole depending on morphology and structure optimization by reduced graphene oxide as support frameworks. Electrochim Acta 265:47–55.  https://doi.org/10.1016/j.electacta.2018.01.031 CrossRefGoogle Scholar
  48. Zhu J, Xu Y, Hu J, Wei L, Liu J, Zheng M (2018) Facile synthesis of MnO2 grown on nitrogen-doped carbon nanotubes for asymmetric supercapacitors with enhanced electrochemical performance. J Power Sources 393:135–144.  https://doi.org/10.1016/j.jpowsour.2018.05.022 CrossRefGoogle Scholar
  49. Zhu J, Xu Y, Zhang Y, Feng T, Wang J, Mao S, Xiong L (2016b) Porous and high electronic conductivity nitrogen-doped nano-sheet carbon derived from polypyrrole for high-power supercapacitors. Carbon 107:638–645.  https://doi.org/10.1016/j.carbon.2016.06.063 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Chemical EngineeringNorthwest UniversityXi’anPeople’s Republic of China
  2. 2.Electronic Materials Research Laboratory, Key Laboratory of the Ministry of EducationXi’an Jiaotong UniversityXi’anPeople’s Republic of China

Personalised recommendations