Advertisement

A fluorescent nanoprobe based on HgS/ZnS core/shell quantum dots for in-situ rapid visual detection of Cr3+

  • Juncheng Wang
  • Guanbin GaoEmail author
  • Feifei Yang
  • Rui Chen
  • Liang Wang
  • Wenbo Zhu
  • Zhongjie Ma
  • Zhuoying Luo
  • Taolei SunEmail author
Research Paper

Abstract

Heavy metal Cr3+ has been regarded as a threat to the environment and human health. So it is crucial to find a rapid method for detecting Cr3+, especially for the trace amounts. Here, HgS/ZnS core/shell quantum dots (HgS/ZnS QDs) with a quantum yield of 22.6% were synthesized as a fluorescent nanoprobe for detection of Cr3+ with a detection limit of 0.19 nM. With captopril as stabilizer, the formation of the core/shell structure of HgS/ZnS QDs was demonstrated by high-resolution high-angle annular dark-field scanning transmission electron microscopy (HR-HAADF-STEM). The substantial fluorescence (580 nm) quenching of HgS/ZnS QDs which could be seen immediately by the naked eyes was induced selectively and sensitively by Cr3+, even in the case of Cr3+ mixed with other interfering ion. The HgS/ZnS QDs exhibited a stable visual response to Cr3+ from 1 μM, which just conformed to World Health Organization (WHO) standards for drinking water. Moreover, further experiments indicated that the mechanism of fluorescence quenching lied on the aggregation of the HgS/ZnS QDs. These results provide a novel insight for in situ rapid visual detection of heavy metal ions.

Graphical abstract

A rapid visual method was developed for in-situ detection of Cr3+ from 1 μM (WHO standards for the drinking water) through the orange fluorescence quenching (seen by naked eyes) which resulted from the Cr3+ induced the aggregation of captopril coated HgS/ZnS core/shell QDs

Keywords

HgS/ZnS core/shell QDs Fluorescence nanoprobe Visual detection Cr3+ Sensors Environmental applications 

Notes

Acknowledgements

The work was supported by the National Natural Science Foundation of China (21805218, 51873168, 51533007, 51521001), the Natural Science Foundation of Hubei Province (2018CFB348), the Wuhan University of Technology fund for first-class university and first-class discipline construction projects (472-20162008), and the Fundamental Research Funds for the Central Universities (WUT: 2018III023, 2017IVA093).

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

Supplementary material

11051_2019_4468_MOESM1_ESM.docx (2.5 mb)
ESM 1 (DOCX 2597 kb)

References

  1. Ali E, Zheng Y, Yu H, Ying J (2007) Ultrasensitive Pb2+ detection by glutathione-capped quantum dots. Anal Chem 79:9452–9458CrossRefGoogle Scholar
  2. Bloom B, Mendis M, Wierzbinski E, Waldeck D (2016) Eliminating fermi-level pinning in PbS quantum dots using an alumina interfacial layer. J Mater Chem C 4:704–712CrossRefGoogle Scholar
  3. Bloom B, Graff B, Ghosh S, Beratan D, Waldeck D (2017) Chirality control of electron transfer in quantum dot assemblies. J Am Chem Soc 139(26):9038–9043CrossRefGoogle Scholar
  4. Brejna P, Sahayrn U, Norton M, Griffiths P (2011) Surface-enhanced raman spectroscopy hot-spots on Ostwald ripened silver nanoparticles prepared by galvanic displacement. J Phys Chem C 115(5):1444–1449CrossRefGoogle Scholar
  5. Chen D, Zhao F, Qi H, Rutherford M, Peng X (2010) Bright and stable purple/blue emitting CdS/ZnS core/shell nanocrystals grown by thermal cycling using a single-source precursor. Chem Mater 22:1437–1444CrossRefGoogle Scholar
  6. Chen O, Zhao J, Chauhan V, Cui J, Wong C, Harris D, Wei H, Han H, Fukumura D, Jain R, Bawendi M (2013) Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat Mater 12:445–451CrossRefGoogle Scholar
  7. Dayan A, Paine A (2001) Mechanisms of chromium toxicity, carcinogenicity and allergenicity: review of the literature from 1985 to 2000. Hum Exp Toxicol 20:439–451CrossRefGoogle Scholar
  8. Eguilaz M, Gutierrez A, Rivas G (2016) Non-covalent functionalization of multi-walled carbon nanotubes with cytochrome c: enhanced direct electron transfer and analytical applications. Sensors Actuators B 225:74–80CrossRefGoogle Scholar
  9. Fernandez-Delgado N, Herrera M, Pizarro J, Galindo P, Molina SI (2018) HAADF-STEM for the analysis of core-shell quantum dots. J Mater Sci 53(21):15226–15236CrossRefGoogle Scholar
  10. Gao G, Zhang M, Gong D, Chen R, Hu X, Sun T (2017) The size-effect of gold nanoparticles and nanoclusters in the inhibition of amyloid-beta fibrillation. Nanoscale 9(12):4107–4113CrossRefGoogle Scholar
  11. Ge L, Yu H, Ren H, Shi B, Guo Q, Gao W, Li Z, Li J (2017) Photoluminescence of carbon dots and their applications in Hela cell imaging and Fe3+ ion detection. J Mater Sci 52(17):9979–9989CrossRefGoogle Scholar
  12. Guo Y, Wang Z, Shao H, Jiang X (2012) Stable fluorescent gold nanoparticles for detection of Cu2+ with good sensitivity and selectivity. Analyst 137:301–304CrossRefGoogle Scholar
  13. Gutierrez F, Gonzalez-Dominguez J, Anson-Casaos A, Hernandez-Ferrer J, Rubianes M, Martinez M, Rivas G (2017) Single-walled carbon nanotubes covalently functionalized with cysteine: a new alternative for the highly sensitive and selective Cd(II) quantification. Sensors Actuators B 249:506–514CrossRefGoogle Scholar
  14. Hou J, Yang Y, Wang C (2017) Molecular mechanisms of interface interactions between nanomaterials and proteins. Acta Phys -Chim Sin 33:63–79Google Scholar
  15. Hu X, Liu T, Zhang Y, Wang W, Liu Y, Fan W, Li Y, Fan W, Huang Y (2016) Recent advances in the analytical applications of copper nanoclusters. TrAC Trends Anal Chem 77:66–75CrossRefGoogle Scholar
  16. Hu X, Liu X, Zhang X, Chai H, Huang Y (2018) One-pot synthesis of the CuNCs/ZIF-8 nanocomposites for sensitively detecting H2O2 and screening of oxidase activity. Biosens Bioelectron 105:65–70CrossRefGoogle Scholar
  17. Jing L, Ding K, Kalytchuk S, Wang Y, Qiao R, Kershaw S, Rogach A, Gao M (2013) Aqueous manganese-doped core/shell CdTe/ZnS quantum dots with strong fluorescence and high relaxivity. J Phys Chem C 117:18752–18761CrossRefGoogle Scholar
  18. Jing L, Kershaw S, Li Y, Huang X, Li Y, Rogach A, Gao M (2016) Aqueous based semiconductor nanocrystals. Chem Rev 116:10623–10730CrossRefGoogle Scholar
  19. Kaviya S, Kabila S, Jayasree K (2017) Room temperature biosynthesis of greatly stable fluorescent ZnO quantum dots for the selective detection of Cr3+ ions. Mater Res Bull 95:163–168CrossRefGoogle Scholar
  20. Li Y, Hu X, Zhang X, Cao H, Huang Y (2018) Unconventional application of gold nanoclusters/Zn-MOF composite for fluorescence turn-on sensitive detection of zinc ion. Anal Chim Acta 1024:145–152CrossRefGoogle Scholar
  21. Lin Y, Zhang Y, Guo Y, Yang Y, Li H, Fang Y, Wang C (2018) Peptide-functionalized carbon dots for sensitive and selective Ca2+ detection. Sensors Actuators B 273:1654–1659CrossRefGoogle Scholar
  22. Ly N, Oh C, Joo S (2015) A submicromolar Cr(III) sensor with a complex of methionine using gold nanoparticles. Sensors Actuators B 219:276–282CrossRefGoogle Scholar
  23. Nan W, Niu Y, Qin H, Cui F, Yang Y, Lai R, Lin W, Peng X (2012) Crystal structure control of zinc-blende CdSe/CdS core/shell nanocrystals: synthesis and structure-dependent optical properties. J Am Chem Soc 134:19685–19693CrossRefGoogle Scholar
  24. Peng X, Schlamp M, Kadavanich A, Alivisatos A (1997) Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J Am Chem Soc 119:7019–7029CrossRefGoogle Scholar
  25. Qin H, Niu Y, Meng R, Lin X, Lai R, Fang W, Peng X (2014) Single-dot spectroscopy of zinc-blende CdSe/CdS core/shell nanocrystals: nonblinking and correlation with ensemble measurements. J Am Chem Soc 136:179–187CrossRefGoogle Scholar
  26. Sagar L, Walravens W, Maes J, Geiregat P, Hens Z (2017) HgSe/CdE (E = S, Se) core/shell nanocrystals by colloidal atomic layer deposition. J Phys Chem C 121:13816–13822CrossRefGoogle Scholar
  27. Samanta A, Deng Z, Liu Y (2012) Aqueous synthesis of glutathione-capped CdTe/CdS/ZnS and CdTe/CdSe/ZnS core/shell/shell nanocrystal heterostructures. Langmuir 28:8205–8215CrossRefGoogle Scholar
  28. Shen S, Zhang Y, Liu Y, Peng L, Chen X, Wang Q (2012) Manganese-doped Ag2S-ZnS heteronanostructures. Chem Mater 24:2407–2413CrossRefGoogle Scholar
  29. Suganthi A, Joshi A, Sagayaraj P (2012) A novel two-phase thermal approach for synthesizing CdSe/CdS core/shell nanostructure. J Nanopart Res 14:691–699CrossRefGoogle Scholar
  30. Sung T, Lo Y, Chang I (2014) Highly sensitive and selective fluorescence probe for Cr3+ ion detection using water-soluble CdSe QDs. Sensors Actuators B 202:1349–1356CrossRefGoogle Scholar
  31. Tajbakhsh M, Chalmardi G, Bekhradnia A, Hosseinzadeh R, Hasani N, Amiri M (2018) A new fluorene-based Schiff-base as fluorescent chemosensor for selective detection of Cr3+ and Al3+. Spectrochim Acta A 189:22–31CrossRefGoogle Scholar
  32. Walsh A, Ohalloranm J, Gower A (1994) Some effects of elevated levels of chromium (III) in sediments to the mullet Chelon labrosus (R). Ecotoxicol Environ Saf 27:168–176CrossRefGoogle Scholar
  33. Wang Y, Wang L, Waldeck D (2011) Electrochemically guided photovoltaic devices: a photocurrent study of the charge transfer directionality between CdTe and CdSe nanoparticles. J Phys Chem C 115:18136–18141CrossRefGoogle Scholar
  34. Wang B, Tang W, Lu H, Huang Z (2015) Hydrothermal synthesis of ionic liquid-capped carbon quantum dots with high thermal stability and anion responsiveness. J Mater Sci 50(16):5411–5418CrossRefGoogle Scholar
  35. Wu L, Guo Q, Liu Y, Sun Q (2015) Fluorescence resonance energy transfer-based ratiometric fluorescent probe for detection of Zn2+ using a dual-emission silica-coated quantum dots mixture. Anal Chem 87:5318–5323CrossRefGoogle Scholar
  36. Yang J, Zhang W, Hu Y, Yu J (2012) Aqueous synthesis and characterization of glutathione-stabilized beta-HgS nanocrystals with near-infrared photoluminescence. J Colloid Interface Sci 379:8–13CrossRefGoogle Scholar
  37. Yang P, Wang S, Ando M, Murase N (2013) CdSe/Cd1-xZnxS core/shell quantum dots with tunable emission: growth and morphology evolution. J Mater Sci 48(2):651–658CrossRefGoogle Scholar
  38. Yang J, Hu Y, Luo J, Zhu Y, Yu J (2015a) Highly fluorescent, near-infrared-emitting Cd2+-tuned HgS nanocrystals with optical applications. Langmuir 31:3500–3509CrossRefGoogle Scholar
  39. Yang J, Hu Y, Tan J, Jia L, Zhu Y, Yu J (2015b) Ultra-bright near-infrared-emitting HgS/ZnS core/shell nanocrystals for in vitro and in vivo imaging. J Mater Chem B 3:6928–6938CrossRefGoogle Scholar
  40. Yao Q, Feng Y, Rong M, He S, Chen X (2017) Determination of nickel(II) via quenching of the fluorescence of boron nitride quantum dots. Microchim Acta 184:4217–4223CrossRefGoogle Scholar
  41. Zhang L, Xia D, Shen Q (2006) Synthesis and characterization of Ag@TiO2 core-shell nanoparticles and TiO2 nanobubbles. J Nanopart Res 8:23–28CrossRefGoogle Scholar
  42. Zhang L, Xu C, Li B (2009) Simple and sensitive detection method for chromium(VI) in water using glutathione-capped CdTe quantum dots as fluorescent probes. Microchim Acta 166:61–68CrossRefGoogle Scholar
  43. Zhang L, Yang G, He G, Wang L, Liu Q, Zhang Q, Qin D (2012) Synthesis of HgS nanocrystals in the lysozyme aqueous solution through biomimetic method. Appl Surf Sci 258:8185–8191CrossRefGoogle Scholar
  44. Zhang Q, Zhou W, Cui Y, Lyu C, Liu T, Zhang R, Zhang R, Zheng J, Shi Z, Lu C, Guo L (2018) Iron triad nanomaterials and their sustainable application in the environment. Environ Sci Nano 5:246–256CrossRefGoogle Scholar
  45. Zhou J, Pu C, Jiao T, Hou X, Peng X (2016) A two-step synthetic strategy toward monodisperse colloidal CdSe and CdSe/CdS core/shell nanocrystals. J Am Chem Soc 138:6475–6483CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Juncheng Wang
    • 1
  • Guanbin Gao
    • 1
    Email author
  • Feifei Yang
    • 2
  • Rui Chen
    • 2
  • Liang Wang
    • 2
  • Wenbo Zhu
    • 2
  • Zhongjie Ma
    • 1
  • Zhuoying Luo
    • 1
  • Taolei Sun
    • 1
    • 2
    Email author
  1. 1.State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhanPeople’s Republic of China
  2. 2.School of Chemistry, Chemical Engineering and Life ScienceWuhan University of TechnologyWuhanPeople’s Republic of China

Personalised recommendations