Advertisement

Core-shell structure Ag@Pd nanoparticles supported on layered MnO2 substrate as toluene oxidation catalyst

  • Yongfeng LiEmail author
  • Liangjun Xiao
  • Fangfang Liu
  • Yongshen Dou
  • Sanmao Liu
  • Yun Fan
  • Gao Cheng
  • Wei Song
  • Junli Zhou
Research Paper
  • 23 Downloads

Abstract

The silver palladium bimetallic core-shell structure nanoparticles (Ag@Pd NPs) were synthesized by a thin Pd shell slowly generating on the outmost of Ag nanoparticle according to galvanic replacement mechanism. Then, the 2D layered structure manganese dioxide (MnO2) substrate was used to support the as-synthesize Ag@Pd NPs to prepare Ag@Pd/MnO2 catalyst for toluene purification in oxidation reaction. Physicochemical properties of the samples were characterized by a number of different analytical techniques. It is found that the Ag@Pd NPs are homogeneously spherical shape with an average particle diameter size of 7.1 nm. And the MnO2 substrate can not only uniformly disperse Ag@Pd active component on its surface for its high specific surface area and mesopore volume, but also provide the reactive lattice oxygen by its mixed oxidation states of Mn3+/Mn4+. Moreover, the core-shell configuration of Ag@Pd NPs can improve the state phase transformation from Pd0 to PdO2 with the aid of lattice oxygen of MnO2 substrate, because of the lattice oxygen migration controlled strong metal-support interaction (SMSI) effect between palladium active component and MnO2 substrate. So, there would be more exposed PdO2 active sites on the Ag@Pd/MnO2 catalyst relative to monometallic Pd/MnO2 catalyst. Hence, the as-prepared bimetallic core-shell Ag@Pd/MnO2 catalyst exhibits greatly higher toluene oxidation activity at lower reaction temperature than monometallic Pd/MnO2 catalyst, indicating it is a promising catalyst for use in volatile organic compounds (VOCs) purification.

Keywords

Core-shell Palladium Manganese oxide Composite Oxidation Nanolayers Nanostructured catalysts 

Notes

Funding information

This work was financially supported by National Natural Science Foundation of China (51678160, 21606051, 21576054), Guangdong Province Science and Technology Project (2016A020221033), Guangzhou Science and Technology Project (201704020202), Natural Science Foundation of Guangdong Province (2018A030310563) and Research Fund for Applied Science and Technology of Guangdong (2016B020241003).

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

References

  1. Abdel-Fattah WI, Eid MM, El-Moez SIA, Mohamed E, Ali GW (2017) Synthesis of biogenic Ag@Pd core-shell nanoparticles having anti-cancer/anti-microbial functions. Life Sci 183:28–36.  https://doi.org/10.1016/j.lfs.2017.06.017 CrossRefGoogle Scholar
  2. Ahn S, Kang SM, Lee SH, Park JB (2014) Facile synthesis of graphene-supported MnO, Mn3O4, and MnO2 nanocomposites by controlling gas environment. B Korean Chem Soc 35:2889–2890.  https://doi.org/10.5012/bkcs.2014.35.10.2889 CrossRefGoogle Scholar
  3. Baddour-Hadjean R, Pereira-Ramos JP (2010) Raman microspectrometry applied to the study of electrode materials for lithium batteries. Chem Rev 110:1278–1319.  https://doi.org/10.1021/cr800344k CrossRefGoogle Scholar
  4. Chai HJ, Zhang ZM, Zhou YQ, Zhu LH, Lv HQ, Wang N (2018) Roles of intrinsic Mn3+ sites and lattice oxygen in mechanochemical debromination and mineralization of decabromodiphenyl ether with manganese dioxide. Chemosphere 207:41–49.  https://doi.org/10.1016/j.chemosphere.2018.04.160 CrossRefGoogle Scholar
  5. Chen D, Li J, Cui P, Liu H, Yang J (2016) Gold-catalyzed formation of core-shell gold-palladium nanoparticles with palladium shells up to three atomic layers. J Mater Chem A 4:3813–3821.  https://doi.org/10.1039/C5TA10303G CrossRefGoogle Scholar
  6. Cheng G, Yu L, Lan B, Sun M, Lin T, Fu Z, Su X, Qiu M, Guo C, Xu B (2016) Controlled synthesis of α-MnO 2 nanowires and their catalytic performance for toluene combustion. Mater Res Bull 75:17–24.  https://doi.org/10.1016/j.materresbull.2015.11.017 CrossRefGoogle Scholar
  7. Cimino S, Lisi L, Tortorelli M (2016) Low temperature SCR on supported MnOx catalysts for marine exhaust gas cleaning: effect of KCl poisoning. Chem Eng J 283:223–230.  https://doi.org/10.1016/j.cej.2015.07.033 CrossRefGoogle Scholar
  8. da Silva AGM, Rodrigues TS, Taguchi LSK, Fajardo HV, Balzer R, Probst LFD, Camargo PHC (2016) Pd-based nanoflowers catalysts: controlling size, composition, and structures for the 4-nitrophenol reduction and BTX oxidation reactions. J Mater Sci 51:603–614.  https://doi.org/10.1007/s10853-015-9315-3 CrossRefGoogle Scholar
  9. Devaraj S, Munichandraiah N (2008) Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J Phys Chem C 112:4406–4417.  https://doi.org/10.1021/jp7108785 CrossRefGoogle Scholar
  10. Dole HAE, Isaifan RJ, Sapountzi FM, Lizarraga L, Aubert D, Princivalle A, Vernoux P, Baranova EA (2013) Low temperature toluene oxidation over Pt nanoparticles supported on Yttria stabilized-zirconia. Catal Lett 143:996–1002.  https://doi.org/10.1007/s10562-013-1071-x CrossRefGoogle Scholar
  11. Ghosh Chaudhuri R, Paria S (2012) Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 112:2373–2433.  https://doi.org/10.1021/cr100449n CrossRefGoogle Scholar
  12. Gilson RC, Black KCL, Lane DD, Achilefu S (2017) Hybrid TiO2-ruthenium nano-photosensitizer synergistically produces reactive oxygen species in both hypoxic and normoxic conditions. Angew Chem Int Edit 56:10717–10720.  https://doi.org/10.1002/anie.201704458 CrossRefGoogle Scholar
  13. Huang C, Wang HL, Li L, Wang Q, Lu Q, de Gouw JA, Zhou M, Jing SA, Lu J, Chen CH (2015) VOC species and emission inventory from vehicles and their SOA formation potentials estimation in Shanghai, China. Atmos Chem Phys 15:11081–11096.  https://doi.org/10.5194/acp-15-11081-2015 CrossRefGoogle Scholar
  14. Ioannides T, Verykios XE (1996) Charge transfer in metal catalysts supported on doped TiO2: a theoretical approach based on metal–semiconductor contact theory. J Catal 161:560–569.  https://doi.org/10.1006/jcat.1996.0218 CrossRefGoogle Scholar
  15. Jha A, Chandole T, Pandya R, Roh HS, Rode CV (2014) Solvothermal synthesis of mesoporous manganese oxide with enhanced catalytic activity for veratryl alcohol oxidation. RSC Adv 4:19450–19455.  https://doi.org/10.1039/c4ra00184b CrossRefGoogle Scholar
  16. Julien C, Massot M, Baddour-Hadjean R, Franger S, Bach S, Pereira-Ramos JP (2003) Raman spectra of birnessite manganese dioxides. Solid State Ionics 159:345–356.  https://doi.org/10.1016/S0167-2738(03)00035-3 CrossRefGoogle Scholar
  17. Kamal MS, Razzak SA, Hossain MM (2016) Catalytic oxidation of volatile organic compounds (VOCs) - a review. Atmos Environ 140:117–134.  https://doi.org/10.1016/j.atmosenv.2016.05.031 CrossRefGoogle Scholar
  18. Kang J-S, Sohn Y, Pradhan D, Leung KT (2018) Bimetallic Au@M (M = Ag, Pd, Fe, and Cu) nanoarchitectures mediated by 1,4-Phenylene Diisocyanide functionalization Langmuir 34:2849–02855000  https://doi.org/10.1021/acs.langmuir.7b02705
  19. Lesiak B, Mierzwa B, Jiricek P, Bieloshapka I, Juchniewicz K, Borodzinski A (2018) Effect of treatment at high temperatures on morphology of a carbon supported Pd catalyst investigated by X-ray diffraction and photoelectron spectroscopy aided with QUASES. Appl Surf Sci 458:855–863.  https://doi.org/10.1016/j.apsusc.2018.07.137 CrossRefGoogle Scholar
  20. Li JM, Liu JY, Yang Y, Qin D (2015) Bifunctional Ag@Pd-Ag nanocubes for highly sensitive monitoring of catalytic reactions by surface-enhanced Raman spectroscopy. J Am Chem Soc 137:7039–7042.  https://doi.org/10.1021/jacs.5b03528 CrossRefGoogle Scholar
  21. Li JQ, Liu H, Deng YZ, Liu G, Chen YF, Yang J (2016) Emerging nanostructured materials for the catalytic removal of volatile organic compounds. Nanotechnol Rev 5:147–181.  https://doi.org/10.1515/ntrev-2015-0051 CrossRefGoogle Scholar
  22. Li Y, Li Y, Yu Q, Yu L (2012) The catalytic oxidation of toluene over Pd-based FeCrAl wire mesh monolithic catalysts prepared by electroless plating method. Catal Commun 29:127–131.  https://doi.org/10.1016/j.catcom.2012.09.035 CrossRefGoogle Scholar
  23. Li Y, Liu F, Fan Y, Cheng G, Song W, Zhou J (2018) Silver palladium bimetallic core-shell structure catalyst supported on TiO2 for toluene oxidation. Appl Surf Sci 462:207–212.  https://doi.org/10.1016/j.apsusc.2018.08.023 CrossRefGoogle Scholar
  24. Liao HC, Zuo PY, Liu MM (2016) Study on the correlation between the surface active species of Pd/cordierite monolithic catalyst and its catalytic activity. Mater Sci Eng B-Adv Funct Solid-State Mater 211:45–52.  https://doi.org/10.1016/j.mseb.2016.04.015 CrossRefGoogle Scholar
  25. Lupan O, Postica V, Hoppe M, Wolff N, Polonskyi O, Pauporté T, Viana B, Majérus O, Kienle L, Faupel F, Adelung R (2018) PdO/PdO2 functionalized ZnO : Pd films for lower operating temperature H-2 gas sensing. Nanoscale 10:14107–14127.  https://doi.org/10.1039/c8nr03260b CrossRefGoogle Scholar
  26. Ma CJ, Wen YY, Rong CL, Zhang NW, Zheng JB, Chen BH (2017) Delta-MnO2 with an ultrahigh Mn4+ fraction is highly active and stable for catalytic wet air oxidation of phenol under mild conditions. Catal Sci Technol 7:3200–3204.  https://doi.org/10.1039/c7cy00774d CrossRefGoogle Scholar
  27. Michalik-Zym A, Dula R, Duraczyńska D, Kryściak-Czerwenka J, Machej T, Socha RP, Włodarczyk W, Gaweł A, Matusik J, Bahranowski K, Wisła-Walsh E, Lityńska-Dobrzyńska L, Serwicka EM (2015) Active, selective and robust Pd and/or Cr catalysts supported on Ti-, Zr- or Ti, Zr -pillared montmorillonites for destruction of chlorinated volatile organic compounds. Appl Catal B Environ 174:293–307.  https://doi.org/10.1016/j.apcatb.2015.03.015 CrossRefGoogle Scholar
  28. Qiu Y, Rojas E, Murray RA, Irigoyen J, Gregurec D, Castro-Hartmann P, Fledderman J, Estrela-Lopis I, Donath E, Moya SE (2015) Cell uptake, intracellular distribution, fate and reactive oxygen species generation of polymer brush engineered CeO2-x NPs. Nanoscale 7:6588–6598.  https://doi.org/10.1039/c5nr00884k CrossRefGoogle Scholar
  29. Rong SP, Zhang PY, Wang JL, Liu F, Yang YJ, Yang GL, Liu S (2016) Ultrathin manganese dioxide nanosheets for formaldehyde removal and regeneration performance. Chem Eng J 306:1172–1179.  https://doi.org/10.1016/j.cej.2016.08.059 CrossRefGoogle Scholar
  30. Sekol RC, Li XK, Cohen P, Doubek G, Carmo M, Taylor AD (2013) Silver palladium core-shell electrocatalyst supported on MWNTs for ORR in alkaline media. Appl Catal B Environ 138:285–293.  https://doi.org/10.1016/j.apcatb.2013.02.054 CrossRefGoogle Scholar
  31. Tauster SJ, Fung SC (1978) Strong metal-support interactions: occurrence among the binary oxides of groups IIA–VB. J Catal 55:29–35.  https://doi.org/10.1016/0021-9517(78)90182-3 CrossRefGoogle Scholar
  32. Tauster SJ, Fung SC, Garten RL (1978) Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide. J Am Chem Soc 100:170–175.  https://doi.org/10.1021/ja00469a029 CrossRefGoogle Scholar
  33. Tedsree K, Li T, Jones S, Chan CWA, Yu KMK, Bagot PAJ, Marquis EA, Smith GDW, Tsang SCE (2011) Hydrogen production from formic acid decomposition at room temperature using a Ag-Pd core-shell nanocatalyst. Nat Nanotechnol 6:302–307.  https://doi.org/10.1038/nnano.2011.42 CrossRefGoogle Scholar
  34. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl Chem 87:1051–1069.  https://doi.org/10.1515/pac-2014-1117 CrossRefGoogle Scholar
  35. Vandenbroucke AM, Nguyen Dinh MT, Nuns N, Giraudon JM, de Geyter N, Leys C, Lamonier JF, Morent R (2016) Combination of non-thermal plasma and Pd/LaMnO3 for dilute trichloroethylene abatement. Chem Eng J 283:668–675.  https://doi.org/10.1016/j.cej.2015.07.089 CrossRefGoogle Scholar
  36. Vernoux P, Lizarraga L, Tsampas MN, Sapountzi FM, de Lucas-Consuegra A, Valverde JL, Souentie S, Vayenas CG, Tsiplakides D, Balomenou S, Baranova EA (2013) Ionically conducting ceramics as active catalyst supports. Chem Rev 113:8192–8260.  https://doi.org/10.1021/cr4000336 CrossRefGoogle Scholar
  37. Wang XY, Zhao WT, Zhang TH, Zhang YF, Jiang LL, Yin SF (2018) Facile fabrication of shape-controlled CoxMnyO beta nanocatalysts for benzene oxidation at low temperatures. Chem Commun 54:2154–2157.  https://doi.org/10.1039/c8cc00023a CrossRefGoogle Scholar
  38. Yang Y, Zhang S, Wang S, Zhang K, Wang H, Huang J, Deng S, Wang B, Wang Y, Yu G (2015) Ball milling synthesized MnOx as highly active catalyst for gaseous POPs removal: significance of mechanochemically induced oxygen vacancies. Environ Sci Technol 49:4473–4480.  https://doi.org/10.1021/es505232f CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhouPeople’s Republic of China
  2. 2.Foshan Shunde Kinglei Environment & Technology Co., LTDFoshanPeople’s Republic of China

Personalised recommendations