Advertisement

Evolution of nanocrystal size distribution in porous silicon nanoparticles during storage in aqueous media: X-ray diffraction analysis

  • Alexander Yu KharinEmail author
  • Yulia V. Kargina
  • Victor Yu Timoshenko
Research Paper
  • 27 Downloads

Abstract

X-ray diffraction studies of electrochemically prepared mesoporous and microporous silicon particles were carried out to monitor their dissolution in aqueous media. The dissolution process was found to result in either decreasing or an increasing of the mean size of silicon nanocrystallites in mesoporous and microporous samples, respectively. The evolution of nanocrystallite size was related by polydispersity of the initial size distribution and it was described by using a model of “shrinking spheres.” The proposed approach was used to confirm an effect of biopolymer surrounding of silicon nanocrystallites on their stability in aqueous medium. The obtained results and developed model can be useful for potential biomedical applications of porous silicon.

Keywords

Nanoparticles Silicon Oxidation X-ray Diffraction Biomedical applications 

Notes

Acknowledgements

Authors acknowledge S. Abramchuk for the TEM measurements.

Funding information

This work was supported by the Russian Science Foundation (grant No.16-13-10145).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abderrafi K, García Calzada R, Gongalsky MB, Suárez I, Abarques R, Chirvony VS, Timoshenko VY, Ibáñez R, Martínez-Pastor JP (2011) Silicon nanocrystals produced by nanosecond laser ablation in an organic liquid. J Phys Chem C 115(12):5147–5151CrossRefGoogle Scholar
  2. Ahn JH, Kim JY, Seol ML, Baek DJ, Guo Z, Kim CH, Choi SJ, Choi YK (2013) A pH sensor with a double-gate silicon nanowire field-effect transistor. Appl Phys Lett 102(8):083701CrossRefGoogle Scholar
  3. Bellet D, Dolino G (1996) X-ray diffraction studies of porous silicon. Thin Solid Films 276(1–2):1–6CrossRefGoogle Scholar
  4. Canham LT (1990) Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl Phys Lett 57(10):1046–1048CrossRefGoogle Scholar
  5. Canham LT (2007) Nanoscale semiconducting silicon as a nutritional food additive. Nanotechnology 18(18):185704CrossRefGoogle Scholar
  6. Erogbogbo F, Yong KT, Roy I, Xu G, Prasad PN, Swihart MT (2008) Biocompatible luminescent silicon quantum dots for imaging of cancer cells. ACS Nano 2(5):873–878CrossRefGoogle Scholar
  7. Gongalsky MB, Kharin AY, Osminkina LA, Timoshenko VY, Jeong J, Lee H, Chung BH (2012) Enhanced photoluminescence of porous silicon nanoparticles coated by bioresorbable polymers. Nanoscale Res Lett 7(1):446CrossRefGoogle Scholar
  8. Gubicza J, Ribárik G, Bakonyi I, Ungár T (2001) Crystallite-size distribution and dislocation structure in nanocrystalline HfNi5 determined by X-ray diffraction profile analysis. J Nanosci Nanotechnol 1(3):343–348CrossRefGoogle Scholar
  9. Halbwax M, Sarnet T, Delaporte P, Sentis M, Etienne H, Torregrosa F, Vervisch V, Perichaud I, Martinuzzi S (2008) Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication. Thin Solid Films 516(20):6791–6795CrossRefGoogle Scholar
  10. Ida T, Ando M, Toraya H (2000) Extended pseudo-Voigt function for approximating the Voigt profile. J Appl Crystallogr 33(6):1311–1316CrossRefGoogle Scholar
  11. Ischenko AA, Fetisov GV, Aslalnov LA (2014) Nanosilicon: properties, synthesis, applications, methods of analysis and control. CRC PressGoogle Scholar
  12. Kabashin AV, Timoshenko VY (2016) What theranostic applications could ultrapure laser-synthesized Si nanoparticles have in cancer? Nanomedicine 11(17):2247–2250CrossRefGoogle Scholar
  13. Lin VSY, Motesharei K, Dancil KPS, Sailor MJ, Ghadiri MR (1997) A porous silicon-based optical interferometric biosensor. Science 278(5339):840–843CrossRefGoogle Scholar
  14. Park JH, Gu L, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ (2009) Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater 8(4):331–336CrossRefGoogle Scholar
  15. Rietveld H (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2(2):65–71CrossRefGoogle Scholar
  16. Sailor MJ (2012) Porous silicon in practice: preparation, characterization and applications. John Wiley & SonsGoogle Scholar
  17. Sato K, Shikida M, Matsushima Y, Yamashiro T, Asaumi K, Iriye Y, Yamamoto M (1998) Characterization of orientation-dependent etching properties of single-crystal silicon: effects of KOH concentration. Sensors Actuators A Phys 64(1):87–93CrossRefGoogle Scholar
  18. Sviridov AP, Osminkina LA, Kharin AY, Gongalsky MB, Kargina JV, Kudryavtsev AA, Bezsudnova YI, Perova TS, Geloen A, Lysenko V, Timoshenko VY (2017) Cytotoxicity control of silicon nanoparticles by biopolymer coating and ultrasound irradiation for cancer theranostic applications. Nanotechnology 28(10):105102CrossRefGoogle Scholar
  19. Tamarov KP, Osminkina LA, Zinovyev SV, Maximova KA, Kargina JV, Gongalsky MB, Ryabchikov Y, Al-Kattan A, Sviridov AP, Sentis M, Ivanov AV, Nikiforov VN, Kabashin AV, Timoshenko VY (2014) Radio frequency radiation-induced hyperthermia using Si nanoparticle-based sensitizers for mild cancer therapy. Sci Rep 4:7034CrossRefGoogle Scholar
  20. Tolstik E, Osminkina LA, Matthäus C, Burkhardt M, Tsurikov KE, Natashina UA, Timoshenko VY, Heintzmann R, Popp J, Sivakov V (2016) Studies of silicon nanoparticles uptake and biodegradation in cancer cells by Raman spectroscopy. Nanomedicine 12(7):1931–1940CrossRefGoogle Scholar
  21. Williamson GK, Hall WH (1953) X-ray line broadening from filed aluminium and wolfram. Acta Metall 1(1):22–31CrossRefGoogle Scholar
  22. Wu C, Crouch CH, Zhao L, Carey JE, Younkin R, Levinson JA, Mazur E, Farrell RM, Gothoskar P, Karger A (2001) Near-unity below-band-gap absorption by microstructured silicon. Appl Phys Lett 78(13):1850–1852CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.National Research Nuclear University “MEPhI”MoscowRussia
  2. 2.Physics DepartmentLomonosov Moscow State UniversityMoscowRussia
  3. 3.Lebedev Physical Institute of RASMoscowRussia

Personalised recommendations