Advertisement

Effects of preparation mode and doping on the genesis and properties of Ni/Ce1-xMxOy nanocrystallites (M = Gd, La, Mg) for catalytic applications

  • Ekaterina V. Matus
  • Lyudmila B. Okhlopkova
  • Olga B. Sukhova
  • Ilyas Z. Ismagilov
  • Mikhail A. Kerzhentsev
  • Zinfer R. Ismagilov
Research Paper
  • 35 Downloads

Abstract

To create the catalytically active ceria-based nanocrystallites with the superior anti-sintering and anti-coking behavior, the peculiarity of genesis and properties of Ni/Ce1-xMxOy nanocrystallites (M = Gd, La, Mg; x = 0–0.5; 1.5 ≤ y ≤ 2.0) were studied by thermal analysis, N2 adsorption, X-ray diffraction, transmission, and scanning electron microscopy. The control of nanocrystallite characteristics was achieved by tuning of metal-support interaction through the application of different synthesis method (polymerizable complex method, sol–gel template method), doping, and conditions of thermal treatment (300-800 °C, oxidizing and reducing atmospheres). From undoped CeO2, the mesoporous nanosized Ce1-xMxOy solid solutions are distinguished by higher surface area (95 vs. 155 m2/g), smaller crystallite size (15 vs. 5 nm), and advanced thermal stability. The supported Ce1-xMxOy material Ni species of different dispersion and reducibility were prepared through regulation of composition and crystallite sizes of CexM1-xOy.The Ni dispersion increases upon a decrease of support crystallite sizes, with an increase of mole fraction of M and in the following row of doping cations: Gd ˂ Mg ˂ La. The presence of La or Mg in the nanocrystallite composition promotes the stability against sintering while small particle size provides the anti-coking resistance. The developed Ni/Ce1-xMxOy nanocrystallites were remarkable for their performance in autothermal conversion of ethanol and stability against carbonaceous deposits.

Keywords

Nanocrystallites Doped ceria Ni nanoparticles Metal-support interaction Catalyst Sol–gel method 

Abbreviations

BET

Brunauer–Emmett–Teller

CSR

Coherent scattering region

DTA

Differential thermal analysis

EDS

Energy-dispersive spectroscopy

HRTEM

High-resolution transmission electron microscopy

HAADF-STEM

High-angle annular dark-field imaging scanning transmission electron microscopy

OSC

Oxygen storage capacity

SEM

Scanning electron microscopy

TGA

Thermogravimetric analyses

XRD

X-ray diffraction

XRF

X-ray fluorescence spectroscopy

Notes

Acknowledgments

The authors are grateful to G.S. Litvak, T.Ya. Efimenko, Dr. E.Y. Gerasimov, Serkova A.N., and Dr. V.A. Ushakov for their assistance with catalyst characterization. This work was conducted within the framework of the budget project No. АААА-А17-117041710090-3 for Boreskov Institute of Catalysis.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Andana T, Piumetti M, Bensaid S, Veyre L, Thieuleux C, Russo N, Fino D, Quadrelli EA, Pironea R (2017) Ceria-supported small Pt and Pt3Sn nanoparticles for NOx-assisted soot oxidation. Appl Catal B 209:295–310CrossRefGoogle Scholar
  2. Aneggi E, Boaro M, Colussi S, de Leitenburg C, Trovarellin A (2016) Ceria-based materials in catalysis: historical perspective and future trends. Handb Phys Chem Rare Earths 50:209–242CrossRefGoogle Scholar
  3. Avram D, Sanchez-Dominguez M, Cojocaru B, Florea M, Parvulescu V, Tiseanu C (2015) Toward a unified description of luminescence-local structure correlation in Ln doped CeO2 nanoparticles: roles of Ln ionic radius, Ln concentration, and oxygen vacancies. J Phys Chem C 119:16303–16313CrossRefGoogle Scholar
  4. Bengaard HS, Nørskov JK, Sehested J, Clausen BS, Nielsen LP, Molenbroek AM, Rostrup-Nielsen JR (2002) Steam reforming and graphite formation on Ni catalysts. J Catal 209:365–384CrossRefGoogle Scholar
  5. Brezesinski T, Antonietti M, Groenewolt M, Pinna N, Smarsly B (2005) The generation of mesostructured crystalline CeO2, ZrO2 and CeO2–ZrO2 films using evaporation-induced self-assembly. New J Chem 29:237–242CrossRefGoogle Scholar
  6. Cai W, Wang F, Zhan E, Van Veen AC, Mirodatos C, Shen W (2008) Hydrogen production from ethanol over Ir/CeO2 catalysts: a comparative study of steam reforming, partial oxidation and oxidative steam reforming. J Catal 257:96–107CrossRefGoogle Scholar
  7. Cai W, Wang F, Daniel C, van Veen AC, Schuurman Y, Descorme C, Provendier H, Shen W, Mirodatos C (2012) Oxidative steam reforming of ethanol over Ir/CeO2 catalysts: a structure sensitivity analysis. J Catal 286:137–152CrossRefGoogle Scholar
  8. Chan SH, Wang HM (2000) Effect of natural gas composition on autothermal fuel reforming products. Fuel Process Technol 64:221–239CrossRefGoogle Scholar
  9. Christensen KO, Chen D, Lødeng R, Holmen A (2006) Effect of supports and Ni crystal size on carbon formation and sintering during steam methane reforming. Appl Catal A 314:9–22CrossRefGoogle Scholar
  10. Dantas SC, Resend KA, Avila-Neto CN, Noronha FB, Bueno JMC, Hori CE (2016) Nickel supported catalysts for hydrogen production by reforming of ethanol as addressed by in situ temperature and spatial resolved XANES analysis. Int J Hydrog Energy 41:3399–3413CrossRefGoogle Scholar
  11. Deng J, Chu W, Wang B, Yanga W, Zhao XS (2016) Mesoporous Ni/Ce1−xNixO2−y heterostructure as an efficient catalyst for converting greenhouse gas to H2 and syngas. Catal Sci Technol 6:851–862CrossRefGoogle Scholar
  12. Divins NJ, Casanovas A, Xu W, Senanayake SD, Wiater D, Trovarelli A, Llorca J (2015) The influence of nano-architectured CeOx supports in RhPd/CeO2 for the catalytic ethanol steam reforming reaction. Catal Today 253:99–105CrossRefGoogle Scholar
  13. Dong Q, Yin S, Guo C, Sato T (2012) Aluminum-doped ceria-zirconia solid solutions with enhanced thermal stability and high oxygen storage capacity. Nanoscale Res Lett 7:542CrossRefGoogle Scholar
  14. Duarte RB, Safonova OV, Krumeich F, Makosch M, van Bokhoven JA (2013)  Oxidation state of Ce in CeO2-Promoted Rh/Al2O3catalysts during methane steam reforming: H2O activation and alumina stabilization. ACS Catal 3:1956–1964Google Scholar
  15. Dulgheru P, Sullivan JA (2013) Rare earth (La, Nd, Pr) doped ceria zirconia solid solutions for soot combustion. Top Catal 56:504–510CrossRefGoogle Scholar
  16. Farbun IA, Romanova IV, Terikovskaya TE, Dzanashvili DI, Kirillov SA (2007) Complex formation in the course of synthesis of zinc oxide from citrate solutions. Russ J Appl Chem 80(11):1798–1803CrossRefGoogle Scholar
  17. Gaki A, Anagnostaki O, Kioupis D, Perraki T, Gakis D, Kakali G (2008) Optimization of LaMO3 (M: Mn, co, Fe) synthesis through the polymeric precursor route. J Alloys Compd 451:305–308CrossRefGoogle Scholar
  18. Gosavi PV, Biniwale RB (2012) Effective cleanup of CO in hydrogen by PROX over perovskite and mixed oxides. Int J Hydrog Energy 37:3958–3963CrossRefGoogle Scholar
  19. Han X, Yu Y, He H, Shan W (2013) Hydrogen production from oxidative steam reforming of ethanol over rhodium catalysts supported on Ce-La solid solution. Int J Hydrog Energy 38:10293–10304CrossRefGoogle Scholar
  20. Hong W, Lijuan Z, Miao L, Yuan L, Xue B (2013) Co/CeO2 for ethanol steam reforming: effect of ceria morphology. J Rare Earths 31(6):565–571CrossRefGoogle Scholar
  21. Ismagilov IZ, Matus EV, Kuznetsov VV, Mota N, Navarro RM, Kerzhentsev MA, Ismagilov ZR, Fierro JLG (2013) Nanoscale control during synthesis of Me/La2O3, Me/CexGd1−xOy and Me/CexZr1−xOy (Me = Ni, Pt, Pd, Rh) catalysts for autothermal reforming of methane. Catal Today 210:10–18CrossRefGoogle Scholar
  22. Ismagilov IZ, Matus EV, Kuznetsov VV, Kerzhentsev MA, Yashnik SA, Prosvirin IP, Mota N, Navarro RM, Fierro JLG, Ismagilov ZR (2014) Hydrogen production by autothermal reforming of methane over NiPd catalysts: effect of support composition and preparation mode. Int J Hydrog Energy 39:20992–21006CrossRefGoogle Scholar
  23. Ismagilov IZ, Matus EV, Nefedova DV, Kuznetsov VV, Yashnik SA, Kerzhentsev MA, Ismagilov MA (2015) Effect of support modification on the physicochemical properties of a NiPd/Al2O3 catalyst for the autothermal reforming of methane. Kinet Catal 56:394–402CrossRefGoogle Scholar
  24. Ismagilov ZR, Matus EV, Ismagilov IZ, Sukhova OB, Yashnik SA, Ushakov VA, Kerzhentsev MA (2019) Hydrogen production through hydrocarbon fuel reforming processes over Ni based catalysts. Catal Today 323:166–182Google Scholar
  25. Ivanov VK, Polezhaeva OS, Tret’yakov YD (2010) Nanocrystalline ceria: synthesis, structure-sensitive properties, and promising applications. Russ J Gen Chem 80(3):604–617CrossRefGoogle Scholar
  26. Jasinski P, Suzuki T, Anderson HU (2003) Nanocrystalline undoped ceria oxygen sensor. Sens Actuators B: Chem 95:73–77CrossRefGoogle Scholar
  27. Karolewicz B, Gajda M, Pluta J, Gorniak A (2016) The effect of Pluronic F127 on the physicochemical properties and dissolution profile of lovastatin solid dispersions. J Therm Anal Calorim 123:2283–2290CrossRefGoogle Scholar
  28. Kašpar J, Graziani M, Fornasiero P (2000) Ceria-containing three-way catalysts. Handb Phys Chem Rare Earths 29:159–267CrossRefGoogle Scholar
  29. Katta L, Sudarsanam P, Thrimurthulu G, Reddy BM (2010) Doped nanosized ceria solid solutions for low temperature soot oxidation: zirconium versus lanthanum promoters. Appl Catal B: Env 101:101–108CrossRefGoogle Scholar
  30. Ke Y, Lai S-Y (2014) Comparison of the catalytic benzene oxidation activity of mesoporous ceria prepared via hard-template and soft-template. Microporous Mesoporous Mater 198:256–262CrossRefGoogle Scholar
  31. Kerzhentsev МА, Matus ЕV, Ismagilov IZ, Ushakov VА, Stonkus ОА, Larina ТV, Kozlova GS, Bharali P, Ismagilov ZR (2017) Structural and morphological properties of Ce1-xMxOy (M = Gd, La, Mg) supports for catalysts of autothermal conversion of ethanol. J Struct Chem 58:126–134CrossRefGoogle Scholar
  32. Kugai J, Subramani V, Song C, Engelhard MH, Chin Y-H (2006) Effects of nanocrystalline CeO2 supports on the properties and performance of Ni–Rh bimetallic catalyst for oxidative steam reforming of ethanol. J Catal 238:430–440CrossRefGoogle Scholar
  33. Li XC, Hu QH, Yang YF, Chen JR, Lai ZH (2008) Effects of sol-gel method and lanthanum addition on catalytic performances of nickel-based catalysts for methane reforming with carbon dioxide. J Rare Earth 26:864–868CrossRefGoogle Scholar
  34. Li L, Chen F, Lu J-Q, Luo M-F (2011) Study of defect sites in Ce1-xMxO2-δ (x = 0.2) solid solutions using Raman spectroscopy. J Phys Chem A 115:7972–7977CrossRefGoogle Scholar
  35. Li D, Li X, Gong J (2016) Catalytic reforming of oxygenates: state of the art and future prospects. Chem Rev 116:11529–11653CrossRefGoogle Scholar
  36. Linganiso LZ, Ramana V, Pendyala R, Jacobs G, Davis BH, Cronauer DC, Kropf AJ, Marshal CL (2011) Low-temperature water–gas shift: doping ceria improves reducibility and mobility of O-bound species and catalyst activity. Catal Lett 141:1723–1731CrossRefGoogle Scholar
  37. Liu F, Zhao L, Wang H, Bai X, Liu Y (2014) Study on the preparation of Ni-La-Ce oxide catalyst for steam reforming of ethanol. Int J Hydrog Energy 39:10454–10466CrossRefGoogle Scholar
  38. Liu Z, Duchoň T, Wang H, Peterson EW, Zhou Y, Luo S, Zhou J, Matolín V, Stacchiola DJ, Rodriguez JA, Senanayake SD (2015) Mechanistic insights of ethanol steam reforming over Ni-CeOx (111): the importance of hydroxyl groups for suppressing coke formation. J Phys Chem C 119:18248–18256CrossRefGoogle Scholar
  39. Matus EV, Nefedova DV, Kuznetsov VV, Ushakov VA, Stonkus OA, Ismagilov IZ, Kerzhentsev MA, Ismagilov ZR (2017) Effect of the support composition on the physicochemical properties of Ni/Ce1-xLaxOy catalysts and their activity in an autothermal methane reforming reaction. Kinet Catal 58:610–621CrossRefGoogle Scholar
  40. McFarland EW, Metiu H (2013) Catalysis by doped oxides. Chem Rev 113:4391–4427CrossRefGoogle Scholar
  41. Melchionna M, Fornasiero P (2014) The role of ceria-based nanostructured materials in energy applications. Mater Today 17:349–357CrossRefGoogle Scholar
  42. Mondal T, Pant KK, Dalai AK (2015) Catalytic oxidative steam reforming of bio-ethanol for hydrogen production over Rh promoted Ni/CeO2-ZrO2 catalyst. Int J Hydrog Energy 40:2529–2544CrossRefGoogle Scholar
  43. Montini T, De Rogatis L, Gombac V, Fornasiero P, Graziani M (2007) Rh(1%)@CexZr1-xO2–Al2O3 nanocomposites: Active and stable catalysts for ethanol steam reforming. Appl Catal B: Env 71:125–134CrossRefGoogle Scholar
  44. Montini T, Melchionna M, Monai M, Fornasiero P (2016) Fundamentals and catalytic applications of CeO2-based materials. Chem Rev 116:5987–6041CrossRefGoogle Scholar
  45. Nahar G, Dupont V (2014) Hydrogen production from simple alkanes and oxygenated hydrocarbons over ceria–zirconia supported catalysts, review. Renew Sust Energ Rev 32:777–796CrossRefGoogle Scholar
  46. Nguyen-Phan TD, Song MB, Kim EJ, Shin EW (2009) The role of rare earth metals in lanthanide-incorporated mesoporous titania. Micropor Mesopor Mater 119:290–298CrossRefGoogle Scholar
  47. Paier J, Penschke C, Sauer J (2013) Oxygen defects and surface chemistry of ceria: quantum chemical studies compared to experiment. Chem Rev 113:3949–3985CrossRefGoogle Scholar
  48. Pinaeva LG, Sadovskaya EM, Ivanova YA, Kuznetsova TG, Prosvirin IP, Sadykov VA, Schuurman Y, van Veen AC, Mirodatos C (2014) Water gas shift and partial oxidation of CH4 over CeO2-ZrO2(-La2O3) and Pt/CeO2-ZrO2(-La2O3): performance under transient conditions. Chem Eng J 257:281–291CrossRefGoogle Scholar
  49. Prasad DH, Park SY, Ji H-I, Kim H-R, Son J-W, Kim B-K, Lee H-W, Lee J-H (2012) Structural characterization and catalytic activity of Ce0.65Zr0.25RE0.1O2−δ nanocrystalline powders synthesized by the glycine-nitrate process. J Phys Chem C 116:3467–3476CrossRefGoogle Scholar
  50. Quinelato AL, Longo E, Leite ER, Bernardi MIB, Varela JA (2001) Synthesis and sintering of ZrO2-CeO2 powder by use of polymeric precursor based on Pechini process. J Mater Sci 36:3825–3830CrossRefGoogle Scholar
  51. Reddy BM, Thrimurthulu G, Katta L (2011) Design of efficient CexM1-xO2-δ (M = Zr, Hf, Tb and Pr) nanosized model solid solutions for CO oxidation. Catal Lett 141:572–581CrossRefGoogle Scholar
  52. Rezaei M, Alavi SM, Sahebdelfar S, Yan Z-F (2009) Synthesis of ceria doped nanozirconia powder by a polymerized complex method. J Porous Mater 16:497–505CrossRefGoogle Scholar
  53. Rodriguez JA, Grinter DC, Liu Z, Palomino RM, Senanayake SD (2017) Ceria-based model catalysts: fundamental studies on the importance of the metal–ceria interface in CO oxidation, the water–gas shift, CO2 hydrogenation, and methane and alcohol reforming. Chem Soc Rev 46:1824–1841CrossRefGoogle Scholar
  54. Shehata N, Meehan K, Hudait M, Jain N (2012) Control of oxygen vacancies and Ce3+ concentrations in doped ceria nanoparticles via the selection of lanthanide element. J Nanopart Res 14:1173CrossRefGoogle Scholar
  55. Shido T, Iwasawa Y (1992) Regulation of reaction intermediate by reactant in the water-gas shift reaction on CeO2, in relation to reactant-promoted mechanism. J Catal 136(2):493–503CrossRefGoogle Scholar
  56. Shih S-J, Wu Y-Y, Borisenko KB (2011) Control of morphology and dopant distribution in yttrium-doped ceria nanoparticles. J Nanopart Res 13:7021–7028CrossRefGoogle Scholar
  57. Sulcova P, Vecera J, Strnadlova L (2012) Study of doped CeO2 prepared by different synthesis. J Therm Anal Calorim 108:519–523CrossRefGoogle Scholar
  58. Tai L-W, Lessing PA (1992) Modified resin-intermediate processing of perovskite powders: part 1. Optimization of polymeric precursors. J Mater Res 7:502–510CrossRefGoogle Scholar
  59. Theocharis CR, Kyriacou G, Christophidou M (2005) Preparation and characterization of nanoporous ceria containing heteroatoms, with and without a matrix. Adsorption 11:763–767CrossRefGoogle Scholar
  60. Vidmar P, Fornasiero P, Kaspar J, Gubitosa G, Graziani M (1997) Effects of trivalent dopants on the redox properties of Ce0.6Zr0.4O2 mixed oxide. J Catal 171:160–168CrossRefGoogle Scholar
  61. Vinodkumar T, Durgasri DN, Reddy BM (2013) Design of transition and rare earth metal doped ceria nanocomposite oxides for CO oxidation. Int J Adv Eng Sci Appl Math 5(4):224–231CrossRefGoogle Scholar
  62. Vinodkumar T, Rao BG, Reddy BM (2015) Influence of isovalent and aliovalent dopants on the reactivity of cerium oxide for catalytic applications. Catal Today 253:57–64CrossRefGoogle Scholar
  63. Wang R, Xu H, Liu X, Ge Q, Li W (2006) Role of redox couples of Rh0/Rhδ+ and Ce4+/Ce3+ in CH4/CO2 reforming over Rh–CeO2/Al2O3 catalyst. Appl Catal A 305:204–210CrossRefGoogle Scholar
  64. Wang F, Xu L, Zhang J, Zhao Y, Li H, Li HX, Wu K, Xu GQ, Chen W (2016) Tuning the metal-support interaction in catalysts for highly efficient methane dry reforming reaction. Appl Catal B: Env 180:511–520CrossRefGoogle Scholar
  65. Wason MS, Zhao J (2013) Cerium oxide nanoparticles: potential applications for cancer and other diseases. Am J Transl Res 5(2):126–131Google Scholar
  66. Wenjuan S, Hongjuan G, Chang L, Xiaonan W (2012) Controllable preparation of CeO2 nanostructure materials and their catalytic activity. J Rare Earths 30(7):665–669CrossRefGoogle Scholar
  67. Wu L, Wiesmann HJ, Moodenbaugh AR, Klie RF, Zhu Y, Welch DO, Suenaga M (2004) Oxidation state and lattice expansion of CeO2-x nanoparticles as a function of particle size, Phys. Rev B: Condens Matter 69:125415CrossRefGoogle Scholar
  68. Yan C-H, Yan Z-G, Du Y-P, Shen J, Zhang C, Feng W (2011) Controlled synthesis and properties of rare earth nanomaterials. Handb Phys Chem Rare Earths 41:275–472CrossRefGoogle Scholar
  69. Yang J, Lukashuk L, Li H, Fottinger K, Rupprechter G, Schubert U (2014) High surface area ceria for CO oxidation prepared from cerium t-butoxide by combined sol–gel and solvothermal processing. Catal Lett 144:403–412CrossRefGoogle Scholar
  70. Yao X, Tang C, Ji Z, Dai Y, Cao Y, Gao F, Dong L, Chen Y (2013) Investigation of the physicochemical properties and catalytic activities of Ce0.67M0.33O2 (M = Zr4+, Ti4+, Sn4+) solid solutions for NO removal by CO. Catal Sci Technol 3:688–698CrossRefGoogle Scholar
  71. Zaghib K, Julien CM, Prakash J (2003) New trends in intercalation compounds for energy storage and conversion: Proceedings of the International SymposiumGoogle Scholar
  72. Zanchet D, Santos JB, Damyanova S, Gallo JMR, Bueno JMC (2015) Toward understanding metal-catalyzed ethanol reforming. ACS Catal 5:3841–3863CrossRefGoogle Scholar
  73. Zdravković J, Simović B, Golubović A, Poleti D, Veljković I, Šćepanović M, Branković G (2015) Comparative study of CeO2 nanopowders obtained by the hydrothermal method from various precursors. Ceram Int 41:1970–1979CrossRefGoogle Scholar
  74. Zhang F, Jin Q, Chan S-W (2004) Ceria nanoparticles: size, size distribution, and shape. J Appl Phys 95(8):4319–4326CrossRefGoogle Scholar
  75. Zhang B, Li D, Wang X (2010) Catalytic performance of La–Ce–O mixed oxide for combustion of methane. Catal Today 158:348–353CrossRefGoogle Scholar
  76. Zhang T, Tang D, Shao Y, Yu Z (2010a) Kinetics of nanoscale cerium dioxide prepared by Pechini. Process. J Mater Eng Perform (JMEPEG) 19:1220–1224CrossRefGoogle Scholar
  77. Zhu J, Zhang D, King KD (2012) Reforming of CH4 by partial oxidation: thermodynamic and kinetic analyses. Fuel 80:899–905CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Boreskov Institute of CatalysisNovosibirskRussia
  2. 2.Institute of Coal Chemistry and Material ScienceKemerovoRussia

Personalised recommendations