Advertisement

Fabrication of highly fluorescent multiple Fe3O4 nanoparticles core-silica shell nanoparticles

  • Wongyun Byoun
  • Moongyu Jang
  • Hyojong YooEmail author
Research Paper
  • 83 Downloads

Abstract

The synthesis of hybrid nanoparticles with multiple functions from the economical and scalable perspective is an important issue in nanoparticle engineering. Herein, we report a representative example of multi-functional nanosystems simultaneously possessing fluorescence and magnetism as well as the excellent structural properties of nanosilica. Highly fluorescent multiple Fe3O4 nanoparticles core-silica shell nanoparticles (FL multi-Fe3O4@SiO2 NPs) are successfully synthesized and fully characterized. The multiple Fe3O4 nanoparticles can be uniformly and collectively encapsulated within a silica matrix using a reverse microemulsion (RM) method. Fluorescent dyes are successfully functionalized through the sequential hydrolysis and condensation of tetraethylorthosilicate (TEOS) and 3-(aminopropyl) triethoxysilane (APTES). Both organic (fluorescein) and inorganic (Rubpy) dyes can be used to generate the FL multi-Fe3O4@SiO2 NPs. These synthetic paradigms for multi-functional nanoparticles can significantly facilitate the fabrications of unique nanomaterials widely applied in a variety of areas.

Graphical abstract

Keywords

Multi-functional nanosystem Core-shell nanoparticle Fluorescent nanosilica Magnetic property Iron oxide 

Notes

Funding

This work was supported by the Hallym Leading Research Group Support Program of 2017 (HRF-LGR-2017-0001).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11051_2018_4445_MOESM1_ESM.docx (1.1 mb)
ESM 1 (DOCX 1103 kb)

References

  1. Alberto G, Caputo G, Viscardi G, Coluccia S, Martra G (2012) Molecular engineering of hybrid dye–silica fluorescent nanoparticles: influence of the dye structure on the distribution of fluorophores and consequent photoemission brightness. Chem Mater 24:2792–2801.  https://doi.org/10.1021/cm301308g CrossRefGoogle Scholar
  2. Bagwe RP, Yang C, Hilliard LR, Tan W (2004) Optimization of dye-doped silica nanoparticles prepared using a reverse microemulsion method. Langmuir 20:8336–8342.  https://doi.org/10.1021/la049137j CrossRefGoogle Scholar
  3. Bartelmess J, Quinn SJ, Giordani S (2015) Carbon nanomaterials: multi-functional agents for biomedical fluorescence and Raman imaging. Chem Soc Rev 44:4672–4698.  https://doi.org/10.1039/C4CS00306C CrossRefGoogle Scholar
  4. Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33:941–951.  https://doi.org/10.1038/nbt.3330 CrossRefGoogle Scholar
  5. Blum AP, Kammeyer JK, Rush AM, Callmann CE, Hahn ME, Gianneschi NC (2015) Stimuli-responsive nanomaterials for biomedical applications. J Am Chem Soc 137:2140–2154.  https://doi.org/10.1021/ja510147n CrossRefGoogle Scholar
  6. Byoun W, Yoo H (2017) Peapod assemblies of Au and Au/Pt nanoparticles encapsulated within hollow silica nanotubes. ChemistrySelect 2:2414–2419.  https://doi.org/10.1002/slct.201700379 CrossRefGoogle Scholar
  7. Byoun W, Jung S, Tran NM, Yoo H (2018) Synthesis and application of dendritic fibrous nanosilica/gold hybrid nanomaterials. ChemistryOpen 7:349–355.  https://doi.org/10.1002/open.201800040 CrossRefGoogle Scholar
  8. Cha J, Cui P, Lee J-K (2010) A simple method to synthesize multifunctional silica nanocomposites, NPs@SiO2, using polyvinylpyrrolidone (PVP) as a mediator. J Mater Chem 20:5533–5537.  https://doi.org/10.1039/B924702E CrossRefGoogle Scholar
  9. Chatterjee K, Sarkar S, Jagajjanani Rao K, Paria S (2014) Core/shell nanoparticles in biomedical applications. Adv Colloid Interf Sci 209:8–39.  https://doi.org/10.1016/j.cis.2013.12.008 CrossRefGoogle Scholar
  10. Chen Y, Chen H-R, Shi J-L (2014) Construction of homogenous/heterogeneous hollow mesoporous silica nanostructures by silica-etching chemistry: principles, synthesis, and applications. Acc Chem Res 47:125–137.  https://doi.org/10.1021/ar400091e CrossRefGoogle Scholar
  11. Chen Y, Fan Z, Zhang Z, Niu W, Li C, Yang N, Chen B, Zhang H (2018) Two-dimensional metal nanomaterials: synthesis, properties, and applications. Chem Rev 118:6409–6455.  https://doi.org/10.1021/acs.chemrev.7b00727 CrossRefGoogle Scholar
  12. Cheng L, Wang C, Feng L, Yang K, Liu Z (2014) Functional nanomaterials for phototherapies of cancer. Chem Rev 114:10869–10939.  https://doi.org/10.1021/cr400532z CrossRefGoogle Scholar
  13. Chowdhuri AR, Singh T, Ghosh SK, Sahu SK (2016) Carbon dots embedded magnetic nanoparticles @chitosan@metal organic framework as a nanoprobe for pH sensitive targeted anticancer drug delivery. ACS Appl Mater Interfaces 8:16573–16583.  https://doi.org/10.1021/acsami.6b03988 CrossRefGoogle Scholar
  14. Collins G, Schmidt M, McGlacken GP, O’Dwyer C, Holmes JD (2014) Stability, oxidation, and shape evolution of PVP-capped Pd nanocrystals. J Phys Chem C 118:6522–6530.  https://doi.org/10.1021/jp500716z CrossRefGoogle Scholar
  15. Corr SA, Byrne SJ, Tekoriute R, Meledandri CJ, Brougham DF, Lynch M, Kerskens C, O'Dwyer L, Gun'ko YK (2008) Linear assemblies of magnetic nanoparticles as MRI contrast agents. J Am Chem Soc 130:4214–4215.  https://doi.org/10.1021/ja710172z CrossRefGoogle Scholar
  16. Dai Q, Berman D, Virwani K, Frommer J, Jubert P-O, Lam M, Topuria T, Imaino W, Nelson A (2010) Self-assembled ferrimagnet−polymer composites for magnetic recording media. Nano Lett 10:3216–3221.  https://doi.org/10.1021/nl1022749 CrossRefGoogle Scholar
  17. De Crozals G, Bonnet R, Farre C, Chaix C (2016) Nanoparticles with multiple properties for biomedical applications: a strategic guide. Nano Today 11:435–463.  https://doi.org/10.1016/j.nantod.2016.07.002 CrossRefGoogle Scholar
  18. Ding HL, Zhang YX, Wang S, Xu JM, Xu SC, Li GH (2012) Fe3O4@SiO2 core/shell nanoparticles: the silica coating regulations with a single core for different core sizes and shell thicknesses. Chem Mater 24:4572–4580.  https://doi.org/10.1021/cm302828d CrossRefGoogle Scholar
  19. Fratila RM, Rivera-Fernández S, de la Fuente JM (2015) Shape matters: synthesis and biomedical applications of high aspect ratio magnetic nanomaterials. Nanoscale 7:8233–8260.  https://doi.org/10.1039/C5NR01100K CrossRefGoogle Scholar
  20. Gawande MB, Goswami A, Asefa T, Guo H, Biradar AV, Peng D-L, Zboril R, Varma RS (2015) Core–shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chem Soc Rev 44:7540–7590.  https://doi.org/10.1039/C5CS00343A CrossRefGoogle Scholar
  21. Ghosh Chaudhuri R, Paria S (2012) Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 112:2373–2433.  https://doi.org/10.1021/cr100449n CrossRefGoogle Scholar
  22. Guo X, Mao F, Wang W, Yang Y, Bai Z (2015) Sulfhydryl-modified Fe3O4@SiO2 core/shell nanocomposite: synthesis and toxicity assessment in vitro. ACS Appl Mater Interfaces 7:14983–14991.  https://doi.org/10.1021/acsami.5b03873 CrossRefGoogle Scholar
  23. Han R, Li W, Pan W, Zhu M, Zhou D, Li F-s (2014) 1D magnetic materials of Fe3O4 and Fe with high performance of microwave absorption fabricated by electrospinning method. Sci Rep 4:7493.  https://doi.org/10.1038/srep07493 CrossRefGoogle Scholar
  24. Hanafi-Bojd MY, Jaafari MR, Ramezanian N, Xue M, Amin M, Shahtahmassebi N, Malaekeh-Nikouei B (2015) Surface functionalized mesoporous silica nanoparticles as an effective carrier for epirubicin delivery to cancer cells. Eur J Pharm Biopharm 89:248–258.  https://doi.org/10.1016/j.ejpb.2014.12.009 CrossRefGoogle Scholar
  25. He X, Chen J, Wang K, Qin D, Tan W (2007) Preparation of luminescent Cy5 doped core-shell SFNPs and its application as a near-infrared fluorescent marker. Talanta 72:1519–1526.  https://doi.org/10.1016/j.talanta.2007.01.069 CrossRefGoogle Scholar
  26. Hong L-R, Chai Y-Q, Zhao M, Liao N, Yuan R, Zhuo Y (2015) Highly efficient electrogenerated chemiluminescence quenching of PEI enhanced Ru(bpy)32+ nanocomposite by hemin and Au@CeO2 nanoparticles. Biosens Bioelectron 63:392–398.  https://doi.org/10.1016/j.bios.2014.07.065 CrossRefGoogle Scholar
  27. Hu Y, Wang R, Wang S, Ding L, Li J, Luo Y, Wang X, Shen M, Shi X (2016) Multifunctional Fe3O4@Au core/shell nanostars: a unique platform for multimode imaging and photothermal therapy of tumors. Sci Rep 6:28325.  https://doi.org/10.1038/srep28325 CrossRefGoogle Scholar
  28. Jang MH, Pak J, Yoo H (2013) Synthesis of highly emissive PIPES-stabilized gold nanoclusters and gold nanocluster-doped silica nanoparticles. J Nanosci Nanotechnol 13:2922–2928.  https://doi.org/10.1166/jnn.2013.7365 CrossRefGoogle Scholar
  29. Jia Z, Xiu P, Xiong P, Zhou W, Cheng Y, Wei S, Zheng Y, Xi T, Cai H, Liu Z, Wang C, Zhang W, Li Z (2016) Additively manufactured macroporous titanium with silver-releasing micro−/nanoporous surface for multipurpose infection control and bone repair—a proof of concept. ACS Appl Mater Interfaces 8:28495–28510.  https://doi.org/10.1021/acsami.6b10473 CrossRefGoogle Scholar
  30. Jiang H, Liu Y, Luo W, Wang Y, Tang X, Dou W, Cui Y, Liu W (2018) A resumable two-photon fluorescent probe for Cu2+ and S2− based on magnetic silica core-shell Fe3O4@SiO2 nanoparticles and its application in bioimaging. Anal Chim Acta 1014:91–99.  https://doi.org/10.1016/j.aca.2018.02.006 CrossRefGoogle Scholar
  31. Jin H, Guo C, Liu X, Liu J, Vasileff A, Jiao Y, Zheng Y, Qiao S-Z (2018) Emerging two-dimensional nanomaterials for electrocatalysis. Chem Rev 118:6337–6408.  https://doi.org/10.1021/acs.chemrev.7b00689 CrossRefGoogle Scholar
  32. Kharisov BI, Dias HVR, Kharissova OV, Vázquez A, Peña Y, Gómez I (2014) Solubilization, dispersion and stabilization of magnetic nanoparticles in water and non-aqueous solvents: recent trends. RSC Adv 4:45354–45381.  https://doi.org/10.1039/C4RA06902A CrossRefGoogle Scholar
  33. Kim J, Kim HS, Lee N et al (2008) Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew Chem Int Ed 47:8438–8441.  https://doi.org/10.1002/anie.200802469 CrossRefGoogle Scholar
  34. Kim JW, Kim LU, Kim CK (2007) Size control of silica nanoparticles and their surface treatment for fabrication of dental nanocomposites. Biomacromolecules 8:215–222.  https://doi.org/10.1021/bm060560b CrossRefGoogle Scholar
  35. Koczkur KM, Mourdikoudis S, Polavarapu L, Skrabalak SE (2015) Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Trans 44:17883–17905.  https://doi.org/10.1039/C5DT02964C CrossRefGoogle Scholar
  36. Kostyukova D, Yoo H (2016) Facile fabrication of platinum nanodots assembly core–silica shell nanosystems. J Electron Mater 45:2361–2371.  https://doi.org/10.1007/s11664-015-4313-4 CrossRefGoogle Scholar
  37. Lai L, Xie Q, Chi L, Gu W, Wu D (2016) Adsorption of phosphate from water by easily separable Fe3O4@SiO2 core/shell magnetic nanoparticles functionalized with hydrous lanthanum oxide. J Colloid Interface Sci 465:76–82.  https://doi.org/10.1016/j.jcis.2015.11.043 CrossRefGoogle Scholar
  38. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd Ed. Springer.Google Scholar
  39. Lee J, Lee Y, Youn JK, Na HB, Yu T, Kim H, Lee SM, Koo YM, Kwak JH, Park HG, Chang HN, Hwang M, Park JG, Kim J, Hyeon T (2008) Simple synthesis of functionalized superparamagnetic magnetite/silica core/shell nanoparticles and their application as magnetically separable high-performance biocatalysts. Small 4:143–152.  https://doi.org/10.1002/smll.200700456 CrossRefGoogle Scholar
  40. Lee JE, Lee N, Kim H, Kim J, Choi SH, Kim JH, Kim T, Song IC, Park SP, Moon WK, Hyeon T (2010) Uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery. J Am Chem Soc 132:552–557.  https://doi.org/10.1021/ja905793q CrossRefGoogle Scholar
  41. Lee N, Hyeon T (2012) Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chem Soc Rev 41:2575–2589.  https://doi.org/10.1039/C1CS15248C CrossRefGoogle Scholar
  42. Lee N, Yoo D, Ling D, Cho MH, Hyeon T, Cheon J (2015) Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem Rev 115:10637–10689.  https://doi.org/10.1021/acs.chemrev.5b00112 CrossRefGoogle Scholar
  43. Lei J, Wang L, Zhang J (2011) Superbright multifluorescent core−shell mesoporous nanospheres as trackable transport carrier for drug. ACS Nano 5:3447–3455.  https://doi.org/10.1021/nn103254g CrossRefGoogle Scholar
  44. Li F, Yu Y, Li Q, Zhou M, Cui H (2014b) A homogeneous signal-on strategy for the detection of rpoB genes of mycobacterium tuberculosis based on electrochemiluminescent graphene oxide and ferrocene quenching. Anal Chem 86:1608–1613.  https://doi.org/10.1021/ac403281g CrossRefGoogle Scholar
  45. Li W-P, Liao P-Y, Su C-H, Yeh C-S (2014a) Formation of oligonucleotide-gated silica shell-coated Fe3O4-Au core–shell nanotrisoctahedra for magnetically targeted and near-infrared light-responsive theranostic platform. J Am Chem Soc 136:10062–10075.  https://doi.org/10.1021/ja504118q CrossRefGoogle Scholar
  46. Liberman A, Mendez N, Trogler WC, Kummel AC (2014) Synthesis and surface functionalization of silica nanoparticles for nanomedicine. Surf Sci Rep 69:132–158.  https://doi.org/10.1016/j.surfrep.2014.07.001 CrossRefGoogle Scholar
  47. Lim WQ, Phua SZF, Xu HV, Sreejith S, Zhao Y (2016) Recent advances in multifunctional silica-based hybrid nanocarriers for bioimaging and cancer therapy. Nanoscale 8:12510–12519.  https://doi.org/10.1039/C5NR07853A CrossRefGoogle Scholar
  48. Lin L-S, Cong Z-X, Cao J-B, Ke K-M, Peng Q-L, Gao J, Yang H-H, Liu G, Chen X (2014) Multifunctional Fe3O4@polydopamine core–shell nanocomposites for intracellular mRNA detection and imaging-guided photothermal therapy. ACS Nano 8:3876–3883.  https://doi.org/10.1021/nn500722y CrossRefGoogle Scholar
  49. Ling D, Lee N, Hyeon T (2015) Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications. Acc Chem Res 48:1276–1285.  https://doi.org/10.1021/acs.accounts.5b00038 CrossRefGoogle Scholar
  50. Liu C, Yu H, Li Q, Zhu C, Xia Y (2018) Brighter, more stable, and less toxic: a host–guest interaction-aided strategy for fabricating fluorescent silica nanoparticles and applying them in bioimaging and biosensing at the cellular level. ACS Appl Mater Interfaces 10:16291–16298.  https://doi.org/10.1021/acsami.8b03034 CrossRefGoogle Scholar
  51. Lu A-H, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244.  https://doi.org/10.1002/anie.200602866 CrossRefGoogle Scholar
  52. Mai HD, Seo K, Choi S, Yoo H (2015) High catalytic performance of raspberry-like gold nanoparticles and enhancement of stability by silica coating. RSC Adv 5:18977–18982.  https://doi.org/10.1039/C5RA00650C CrossRefGoogle Scholar
  53. Malyutin AG, Easterday R, Lozovyy Y, Spilotros A, Cheng H, Sanchez-Felix OR, Stein BD, Morgan DG, Svergun DI, Dragnea B, Bronstein LM (2015) Viruslike nanoparticles with maghemite cores allow for enhanced MRI contrast agents. Chem Mater 27:327–335.  https://doi.org/10.1021/cm504029j CrossRefGoogle Scholar
  54. Manju S, Sreenivasan K (2011) Enhanced drug loading on magnetic nanoparticles by layer-by-layer assembly using drug conjugates: blood compatibility evaluation and targeted drug delivery in cancer cells. Langmuir 27:14489–14496.  https://doi.org/10.1021/la202470k CrossRefGoogle Scholar
  55. Meffre A, Mehdaoui B, Connord V, Carrey J, Fazzini PF, Lachaize S, Respaud M, Chaudret B (2015) Complex nano-objects displaying both magnetic and catalytic properties: a proof of concept for magnetically induced heterogeneous catalysis. Nano Lett 15:3241–3248.  https://doi.org/10.1021/acs.nanolett.5b00446 CrossRefGoogle Scholar
  56. Nasir Baig RB, Varma RS (2014) Magnetic carbon-supported palladium nanoparticles: an efficient and sustainable catalyst for hydrogenation reactions. ACS Sustain Chem Eng 2:2155–2158.  https://doi.org/10.1021/sc500341h CrossRefGoogle Scholar
  57. Nyffenegger R, Quellet C, Ricka J (1993) Synthesis of fluorescent, monodisperse, colloidal silica particles. J Colloid Interface Sci 159:150–157.  https://doi.org/10.1006/jcis.1993.1306 CrossRefGoogle Scholar
  58. Oh S-D, Kim M-R, Choi S-H, Chun JH, Lee KP, Gopalan A, Hwang C-G, Sang-Ho K, Hoon OJ (2008) Radiolytic synthesis of Pd–M (M=Ag, Au, Cu, Ni and Pt) alloy nanoparticles and their use in reduction of 4-nitrophenol. J Ind Eng Chem 14:687–692.  https://doi.org/10.1016/j.jiec.2008.04.008 CrossRefGoogle Scholar
  59. Pak J, Yoo H (2013) Facile synthesis of spherical nanoparticles with a silica shell and multiple Au nanodots as the core. J Mater Chem A 1:5408–5413.  https://doi.org/10.1039/C3TA10613F CrossRefGoogle Scholar
  60. Pak J, Yoo H (2014) Synthesis and catalytic performance of multiple gold nanodots core–mesoporous silica shell nanoparticles. Microporous Mesoporous Mater 185:107–112.  https://doi.org/10.1016/j.micromeso.2013.11.003 CrossRefGoogle Scholar
  61. Qu H, Caruntu D, Liu H, O’Connor CJ (2011) Water-dispersible iron oxide magnetic nanoparticles with versatile surface functionalities. Langmuir 27:2271–2278.  https://doi.org/10.1021/la104471r CrossRefGoogle Scholar
  62. Quinto CA, Mohindra P, Tong S, Bao G (2015) Multifunctional superparamagnetic iron oxide nanoparticles for combined chemotherapy and hyperthermia cancer treatment. Nanoscale 7:12728–12736.  https://doi.org/10.1039/C5NR02718G CrossRefGoogle Scholar
  63. Revia RA, Zhang M (2016) Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: recent advances. Mater Today 19:157–168.  https://doi.org/10.1016/j.mattod.2015.08.022 CrossRefGoogle Scholar
  64. Santra S, Wang K, Tapec R, Tan W (2001a) Development of novel dye-doped silica nanoparticles for biomarker application. J Biomed Opt 6:160–166.  https://doi.org/10.1117/1.1353590 CrossRefGoogle Scholar
  65. Santra S, Zhang P, Wang K, Tapec R, Tan W (2001b) Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers. Anal Chem 73:4988–4993.  https://doi.org/10.1021/ac010406+ CrossRefGoogle Scholar
  66. Santra S, Bagwe RP, Dutta D, Stanley JT, Walter GA, Tan W, Moudgil BM, Mericle RA (2005) Synthesis and characterization of fluorescent, radio-opaque, and paramagnetic silica nanoparticles for multimodal bioimaging applications. Adv Mater 17:2165–2169.  https://doi.org/10.1002/adma.200500018 CrossRefGoogle Scholar
  67. Shen L, Laibinis PE, Hatton TA (1999) Bilayer surfactant stabilized magnetic fluids: synthesis and interactions at interfaces. Langmuir 15:447–453.  https://doi.org/10.1021/la9807661 CrossRefGoogle Scholar
  68. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69.  https://doi.org/10.1016/0021-9797(68)90272-5 CrossRefGoogle Scholar
  69. Tan C, Cao X, Wu X-J, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam G-H, Sindoro M, Zhang H (2017) Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev 117:6225–6331.  https://doi.org/10.1021/acs.chemrev.6b00558 CrossRefGoogle Scholar
  70. Tang X, Zhao D, He J, Li F, Peng J, Zhang M (2013) Quenching of the electrochemiluminescence of tris(2,2′-bipyridine)ruthenium(II)/tri-n-propylamine by pristine carbon nanotube and its application to quantitative detection of DNA. Anal Chem 85:1711–1718.  https://doi.org/10.1021/ac303025y CrossRefGoogle Scholar
  71. Tapec R, Zhao XJ, Tan W (2002) Development of organic dye-doped silica nanoparticles for bioanalysis and biosensors. J Nanosci Nanotechnol 2:405–409.  https://doi.org/10.1166/jnn.2002.114 CrossRefGoogle Scholar
  72. Tarn D, Ashley CE, Xue M, Carnes EC, Zink JI, Brinker CJ (2013) Mesoporous silica nanoparticle nanocarriers: biofunctionality and biocompatibility. Acc Chem Res 46:792–801.  https://doi.org/10.1021/ar3000986 CrossRefGoogle Scholar
  73. Tsema Y, Kichin G, Hellwig O, Mehta V, Kimel AV, Kirilyuk A, Rasing T (2016) Helicity and field dependent magnetization dynamics of ferromagnetic Co/Pt multilayers. Appl Phys Lett 109:072405.  https://doi.org/10.1063/1.4961246 CrossRefGoogle Scholar
  74. Van Blaaderen A, Vrij A (1992) Synthesis and characterization of colloidal dispersions of fluorescent, monodisperse silica spheres. Langmuir 8:2921–2931.  https://doi.org/10.1021/la00048a013 CrossRefGoogle Scholar
  75. Verhaegh NAM, Van Blaaderen A (1994) Dispersions of rhodamine-labeled silica spheres: synthesis, characterization, and fluorescence confocal scanning laser microscopy. Langmuir 10:1427–1438.  https://doi.org/10.1021/la00017a019 CrossRefGoogle Scholar
  76. Walsh TR, Knecht MR (2017) Biointerface structural effects on the properties and applications of bioinspired peptide-based nanomaterials. Chem Rev 117:12641–12704.  https://doi.org/10.1021/acs.chemrev.7b00139 CrossRefGoogle Scholar
  77. Wang X, Dong P, Yun W, Xu Y, He P, Fang Y (2009) A solid-state electrochemiluminescence biosensing switch for detection of thrombin based on ferrocene-labeled molecular beacon aptamer. Biosens Bioelectron 24:3288–3292.  https://doi.org/10.1016/j.bios.2009.04.019 CrossRefGoogle Scholar
  78. Wu L, Jubert P-O, Berman D, Imaino W, Nelson A, Zhu H, Zhang S, Sun S (2014) Monolayer assembly of ferrimagnetic CoxFe3–xO4 nanocubes for magnetic recording. Nano Lett 14:3395–3399.  https://doi.org/10.1021/nl500904a CrossRefGoogle Scholar
  79. Wu M-S, Shi H-W, Xu J-J, Chen H-Y (2011) CdS quantum dots/Ru(bpy)32+ electrochemiluminescence resonance energy transfer system for sensitive cytosensing. Chem Commun 47:7752–7754.  https://doi.org/10.1039/C1CC12219C CrossRefGoogle Scholar
  80. Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3:397–415.  https://doi.org/10.1007/s11671-008-9174-9 CrossRefGoogle Scholar
  81. Wu W, Wu Z, Yu T, Jiang C, Kim W-S (2015) Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater 16:023501.  https://doi.org/10.1088/1468-6996/16/2/023501 CrossRefGoogle Scholar
  82. Xie J, Chen K, Lee H-Y, Xu C, Hsu AR, Peng S, Chen X, Sun S (2008) Ultrasmall c(RGDyK)-coated Fe3O4 nanoparticles and their specific targeting to integrin αvβ3-rich tumor cells. J Am Chem Soc 130:7542–7543.  https://doi.org/10.1021/ja802003h CrossRefGoogle Scholar
  83. Xu H, Cui L, Tong N, Gu H (2006) Development of high magnetization Fe3O4/polystyrene/silica nanospheres via combined miniemulsion/emulsion polymerization. J Am Chem Soc 128:15582–15583.  https://doi.org/10.1021/ja066165a CrossRefGoogle Scholar
  84. Xu J, Liang J, Li J, Yang W (2010) Multicolor dye-doped silica nanoparticles independent of FRET. Langmuir 26:15722–15725.  https://doi.org/10.1021/la1028492 CrossRefGoogle Scholar
  85. Xu Y, Qin Y, Palchoudhury S, Bao Y (2011) Water-soluble iron oxide nanoparticles with high stability and selective surface functionality. Langmuir 27:8990–8997.  https://doi.org/10.1021/la201652h CrossRefGoogle Scholar
  86. Yao G, Wang L, Wu Y, Smith J, Xu J, Zhao W, Lee E, Tan W (2006) Flodots: luminescent nanoparticles. Anal Bioanal Chem 385(3):518–524.  https://doi.org/10.1007/s00216-006-0452-z CrossRefGoogle Scholar
  87. Yin D, Liu B, Zhang L, Xie C, Zhang L (2010) Synthesis of Ru(bpy)3-doped silica nanoparticle and its application in fluorescent immunoassay. Nano Biomed Eng 2:117–120.  https://doi.org/10.5101/nbe.v2i2.p117-120 CrossRefGoogle Scholar
  88. Yokoi T, Sakamoto Y, Terasaki O, Kubota Y, Okubo T, Tatsumi T (2006) Periodic arrangement of silica nanospheres assisted by amino acids. J Am Chem Soc 128:13664–13665.  https://doi.org/10.1021/ja065071y CrossRefGoogle Scholar
  89. Yoo H, Pak J (2013) Synthesis of highly fluorescent silica nanoparticles in a reverse microemulsion through double-layered doping of organic fluorophores. J Nanopart Res 15:1609.  https://doi.org/10.1007/s11051-013-1609-2 CrossRefGoogle Scholar
  90. Yoon T-J, Yu KN, Kim E et al (2006) Specific targeting, cell sorting, and bioimaging with smart magnetic silica core–shell nanomaterials. Small 2:209–215.  https://doi.org/10.1002/smll.200500360 CrossRefGoogle Scholar
  91. Yordanova T, Vasileva P, Karadjova I, Nihtianova D (2014) Submicron silica spheres decorated with silver nanoparticles as a new effective sorbent for inorganic mercury in surface waters. Analyst 139:1532–1540.  https://doi.org/10.1039/C3AN01279D CrossRefGoogle Scholar
  92. Zhao SY, Lee D-G, Kim C-W, Cha H-G, Kim Y-H, Kang Y-S (2006) Synthesis of magnetic nanoparticles of Fe3O4 and CoFe2O4 and their surface modification by surfactant adsorption. Bull Kor Chem Soc 27:237–242.  https://doi.org/10.5012/bkcs.2006.27.2.237 CrossRefGoogle Scholar
  93. Zhao W, Gu J, Zhang L, Chen H, Shi J (2005) Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure. J Am Chem Soc 127:8916–8917.  https://doi.org/10.1021/ja051113r CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of ChemistryHallym UniversityChuncheonRepublic of Korea
  2. 2.School of Nano Convergence TechnologyHallym UniversityChuncheonRepublic of Korea

Personalised recommendations