Advertisement

The self-assembly of DyF3 nanoparticles synthesized by chloride-based route

  • E. M. AlakshinEmail author
  • E. I. Kondratyeva
  • D. S. Nuzhina
  • M. F. Iakovleva
  • V. V. Kuzmin
  • K. R. Safiullin
  • A. T. Gubaidullin
  • T. Kikitsu
  • K. Kono
  • A. V. Klochkov
  • M. S. Tagirov
Research Paper
  • 75 Downloads

Abstract

The series of DyF3 nanoparticles was synthesized for the first time by a chloride-based route, using the water-soluble dysprosium chloride hexahydrate as a precursor. The synthesized nanoparticles have sizes of 3 to 7 nm, which is the smallest reported size for DyF3 nanoparticles. The influence of precursor concentration in an aqueous solution prior to the chemical reaction on the size of nanoparticles was studied. The influence of microwave-assisted hydrothermal treatment was also studied. The analysis of transmission electron microscopy (TEM) data revealed no correlation between the size of synthesized nanoparticles and the concentration of the aqueous solution. The AC/DC magnetic susceptibility of DyF3 nanoparticles was measured. The dipolar ferromagnetic transition for this sample was not observed down to 1.8 K that can be possibly explained by onset of superparamagnetism. The self-assembly of DyF3 nanoparticles was observed for the first time by analysis of XRD and TEM data and the evidence of superlattice formation along (020) and (210) lattice planes over the size of 20–30 nm (4–5 nanoparticles) was obtained.

Graphical abstract

Keywords

Nanocrystalline materials X-ray techniques Electron microscopy Crystal structure Colloidal processing Self-assembly 

Notes

Acknowledgements

Authors are grateful to Dr. S.L. Korableva for her help with nanoparticle synthesis.

Funding information

This work was supported by the Russian Science Foundation (project no. 17-72-10198).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Alakshin AM, Aleksandrov AS, Egorov AV, Klochkov AV, Korableva SL, Tagirov MS (2011a) Nuclear pseudoquadrupole resonance of 141Pr in Van Vleck paramagnet PrF3. JETP Lett 94(3):240–242.  https://doi.org/10.1134/S0021364011150021 CrossRefGoogle Scholar
  2. Alakshin EM, Gabidullin BM, Gubaidullin AT, Klochkov AV, Korableva SL, Neklyudova MA, Sabitova AM, Tagirov MS (2011b) Development of various methods for PrF3 nanoparticles synthesis. arXiv 1104:0208Google Scholar
  3. Alakshin EM, Blokhin DS, Sabitova AM, Klochkov AV, Klochkov VV, Kono K, Korableva SL, Tagirov MS (2012) Experimental proof of the existence of water clusters in fullerene-like PrF3 nanoparticles. JETP Lett 96(3):181–183.  https://doi.org/10.1134/S0021364012150027 CrossRefGoogle Scholar
  4. Alakshin AM, Gazizulin RR, Klochkov AV, Korableva SL, Kuzmin VV, Sabitova AM, Safin TR, Safiullin KR, Tagirov MS (2013) Size effect in the (PrF3 nanoparticles–3He) system. JETP Lett 97(10):579–582.  https://doi.org/10.1134/S0021364013100020 CrossRefGoogle Scholar
  5. Alakshin EM, Gazizulin RR, Klochkov AV, Korableva SL, Safin TR, Safiullin KR, Tagirov MS (2014) Annealing of PrF3 nanoparticles by microwave irradiation. Opt Spectrosc 116(5):721–723.  https://doi.org/10.1134/S0030400X14050026 CrossRefGoogle Scholar
  6. Alakshin EM, Klochkov AV, Kondratyeva EI, Korableva SL, Kiiamov AG, Nuzhina DS, Stanislavovas AA, Tagirov MS, Zakharov MY, Kodjikian S (2016) Microwave-assisted hydrothermal synthesis and annealing of DyF3 nanoparticles. J Nanomater 2016:7148307.  https://doi.org/10.1155/2016/7148307 CrossRefGoogle Scholar
  7. Аlakshin EM, Kondratyeva EI, Nuzhina DS, Iakovleva MF, Gilmutdinov IF, Kuzmin VV, Safiullin KR, Kiiamov AG, Klochkov AV, Tagirov MS (2017) Magnetic properties of DyF3 micro- and nanoparticles. Magn Reson Solids 19(2):17204 http://mrsej.kpfu.ru/contents/2017/MRSej_17204.pdf Google Scholar
  8. Alakshin EM, Kondratyeva EI, Kuzmin VV, Safiullin KR, Stanislavovas AA, Savinkov AV, Klochkov AV, Tagirov MS (2018) Spin kinetics of liquid 3He in contact with a DyF3 micropowder at ferromagnetic ordering of Dy3+ ions. JETP Lett 107(2):111–114.  https://doi.org/10.1134/S0021364018020078
  9. Bhowmik S, Gorai T, Maitra U (2014) A room temperature, templated synthesis of lanthanide trifluoride nanoparticles and their unusual self-assembly. J Mater Chem C 2(9):1957–1560.  https://doi.org/10.1039/c3tc31867b CrossRefGoogle Scholar
  10. Cao XJ, Chen L, Guo S, Li XB, Yi PP, Yan AR, Yan GL (2015) Coercivity enhancement of sintered Nd–Fe–B magnets by efficiently diffusing DyF3 based on electrophoretic deposition. J Alloys Compd 631:315–320.  https://doi.org/10.1016/j.jallcom.2015.01.078 CrossRefGoogle Scholar
  11. Chatterjee DK, Rufaihah AJ, Zhang Y (2008) Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. Biomaterials 29(7):937–943.  https://doi.org/10.1016/j.biomaterials.2007.10.051 CrossRefGoogle Scholar
  12. Chen Z, Chen H, Hu H, Yu M, Li F, Zhang Q, Zhou Z, Yi T, Huang C (2008) Versatile synthesis strategy for carboxylic acid−functionalized upconverting nanophosphors as biological labels. J Am Chem Soc 130(10):3023–3029.  https://doi.org/10.1021/ja076151k CrossRefGoogle Scholar
  13. Chen G, Qiu H, Fan R, Hao S, Tan S, Yang C, Han G (2012) Lanthanide-doped ultrasmall yttrium fluoride nanoparticles with enhanced multicolor upconversion photoluminescence. J Mater Chem 22(38):20190–20196.  https://doi.org/10.1039/c2jm32298f CrossRefGoogle Scholar
  14. Dekker R, Klunder DJW, Borreman A, Diemeer MBJ, Wörhoff K, Driessen A, Van Veggel FCJM (2004) Stimulated emission and optical gain in LaF3:Nd nanoparticle-doped polymer-based waveguides. Appl Phys Lett 85(25):6104–6106.  https://doi.org/10.1063/1.1840110 CrossRefGoogle Scholar
  15. Dong H, Du S-R, Zheng X-Y, Lyu G-M, Sun L-D, Li L-D, Zhang P-Z, Zhang C, Yan C-H (2015) Lanthanide nanoparticles: from design toward bioimaging and therapy. Chem Rev 115(19):10725–10815.  https://doi.org/10.1021/acs.chemrev.5b00091 CrossRefGoogle Scholar
  16. Fedorov PP, Luginina AA, Kuznetsov SV, Osiko VV (2011) Nanofluorides. J Fluor Chem 132(12):1012–1039.  https://doi.org/10.1016/j.jfluchem.2011.06.025 CrossRefGoogle Scholar
  17. Gaurkhede SG, Khandpekar MM, Pati SP (2011) Synthesis of LaF3 superfine powder by microwave heating method. MSAIJ 7(6):387–390Google Scholar
  18. Gazizulina AM, Alakshin EM, Baibekov EI, Gazizulin RR, Zaharov MY, Klochkov AV, Korableva SL, Tagirov MS (2014) Electron paramagnetic resonance of Gd3+ ions in powders of LaF3:Gd3+ nanocrystals. JETP Lett 99(3):149–152.  https://doi.org/10.1134/S0021364014030084 CrossRefGoogle Scholar
  19. González-Mancebo D, Becerro AI, Rojas TC, García-Martín ML, de la Fuente JM, Ocaña M (2017) HoF3 and DyF3 nanoparticles as contrast agents for high-field magnetic resonance imaging. Part Part Syst Charact 34(10):1700116.  https://doi.org/10.1002/ppsc.201700116 CrossRefGoogle Scholar
  20. Grzyb T, Runowski M, Lis S (2014) Facile synthesis, structural and spectroscopic properties of GdF3:Ce3+, Ln3+ (Ln3+ = Sm3+, Eu3+, Tb3+, Dy3+) nanocrystals with bright multicolor luminescence. J Lumin 154:479–486.  https://doi.org/10.1016/j.jlumin.2014.05.020 CrossRefGoogle Scholar
  21. He B, Tan JJ, Liew KY, Liu H (2004) Synthesis of size controlled Ag nanoparticles. J Mol Catal A Chem 221(1–2):121–126.  https://doi.org/10.1016/j.molcata.2004.06.025 CrossRefGoogle Scholar
  22. Khorsand Zak A, Abd. Majid WH, Abrishami ME, Yousefi R (2011) X-ray analysis of ZnO nanoparticles by Williamson-Hall and size-strain plot methods. Solid State Sci 13(1):251–256.  https://doi.org/10.1016/j.solidstatesciences.2010.11.024 CrossRefGoogle Scholar
  23. Kraus W, Nolze G (1996) POWDER CELL—a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J Appl Crystallogr 29(3):301–303.  https://doi.org/10.1107/S0021889895014920 CrossRefGoogle Scholar
  24. Lemyre J-L, Ritcey AM (2005) Synthesis of lanthanide fluoride nanoparticles of varying shape and size. Chem Mater 17(11):3040–3043.  https://doi.org/10.1021/cm0502065 CrossRefGoogle Scholar
  25. Li C, Yang J, Yang P, Lian H, Lin J (2008) Hydrothermal synthesis of lanthanide fluorides LnF3 (Ln = La to Lu) Nano−/microcrystals with multiform structures and morphologies. Chem Mater 20(13):4317–4326.  https://doi.org/10.1021/cm800279h CrossRefGoogle Scholar
  26. Li C, Ma P, Yang P, Xu Z, Li G, Yang D, Peng C, Lin J (2011) Fine structural and morphological control of rare earth fluorides REF3 (RE = La–Lu, Y) nano/microcrystals: microwave-assisted ionic liquid synthesis, magnetic and luminescent properties. CrystEngComm 13(3):1003–1013.  https://doi.org/10.1039/c0ce00186d CrossRefGoogle Scholar
  27. Li F, Li C, Liu X, Bai T, Dong W, Zhang X, Shi Z, Feng S (2013) Microwave-assisted synthesis and up–down conversion luminescent properties of multicolor hydrophilic LaF3:Ln3+ nanocrystals. Dalton Trans 42(6):2015–2022.  https://doi.org/10.1039/c2dt32295a CrossRefGoogle Scholar
  28. Lian H, Liu J, Ye Z, Shi C (2005) Spontaneous ring-like self-assembly of BaF2 nanoparticles. J Nanosci Nanotechnol 5(3):394–396.  https://doi.org/10.1166/jnn.2005.080 CrossRefGoogle Scholar
  29. Liou YH, Lo S-L, Kuan WH, Lin C-J, Weng SC (2006) Effect of precursor concentration on the characteristics of nanoscale zerovalent iron and its reactivity of nitrate. Water Res 40(13):2485–2492.  https://doi.org/10.1016/j.watres.2006.04.048 CrossRefGoogle Scholar
  30. Ma L, Chen W-X, Zheng Y-F, Zhao J, Xu Z (2007) Microwave-assisted hydrothermal synthesis and characterizations of PrF3 hollow nanoparticles. Mater Lett 61:2765–2768.  https://doi.org/10.1016/j.matlet.2006.04.124 CrossRefGoogle Scholar
  31. Ma L, Chen W-X, Xu X-Y, Xu L-M, Ning X-M (2010) Synthesis and characterization of novel flower-like CeF3 nanostructures via a rapid microwave method. Mater Lett 64:1559–1561.  https://doi.org/10.1016/j.matlet.2010.04.041 CrossRefGoogle Scholar
  32. Mi C-C, Tian Z-H, Han B-F, Mao C-B, Xu S-K (2012) Microwave-assisted one-pot synthesis of water-soluble rare-earth doped fluoride luminescent nanoparticles with tunable colors. J Alloys Compd 525(5):154–158.  https://doi.org/10.1016/j.jallcom.2012.02.095 CrossRefGoogle Scholar
  33. Mote VD, Purushotham Y, Dole BN (2012) Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. Journal of Theoretical and Applied Physics 6(1):6.  https://doi.org/10.1186/2251-7235-6-6 CrossRefGoogle Scholar
  34. Motte L, Billoudet F, Pileni MP (1995) Self-assembled monolayer of nanosized particles differing by their size. J Phys Chem 99(44):16425–16429.  https://doi.org/10.1021/j100044a033 CrossRefGoogle Scholar
  35. Motte L, Billoudet F, Lacaze E, Pileni M-P (1996) Self-organization of size-selected nanoparticles into three-dimensional superlattices. Adv Mater 8(12):1018–1020.  https://doi.org/10.1002/adma.19960081218 CrossRefGoogle Scholar
  36. Murray CB, Kagan CR, Bawendi MG (1995) Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science 270(5240):1335–1338.  https://doi.org/10.1126/science.270.5240.1335 CrossRefGoogle Scholar
  37. Nemov SA, Marchenko AV, Seregin PP (2008) Oxidation state of dysprosium in aluminosilicate and fluoraluminate glasses. Glas Phys Chem 34(3):340–342.  https://doi.org/10.1134/S1087659608030176 CrossRefGoogle Scholar
  38. Park S-E, Kim T-H, Lee S-R, Namkung S, Jang T-S (2012) Effect of sintering conditions on the magnetic and microstructural properties of Nd–Fe–B sintered magnets doped with DyF3 powders. J Appl Phys 111(7):07A707.  https://doi.org/10.1063/1.3672246 CrossRefGoogle Scholar
  39. Pires LF, Borges FS, Passoni S, Pereira AB (2013) Soil pore characterization using free software and a portable optical microscope. Pedosphere 23(4):503–510.  https://doi.org/10.1016/S1002-0160(13)60043-0 CrossRefGoogle Scholar
  40. Powell JE (1959) Solubilities of some rare-earth compounds. Chemistry semi-annual summary research report for January–June, 1959. Ames Laboratory Technical Reports. p.15. http://lib.dr.iastate.edu/ameslab_isreports/6. Accessed 8 February 2018
  41. Pudovkin MS, Korableva SL, Krasheninnicova AO, Nizamutdinov AS, Semashko VV, Zelenihin PV, Alakshin EM, Nevzorova TA (2014) Toxicity of laser irradiated photoactive fluoride PrF3 nanoparticles toward bacteria. J Phys Conf Ser 560(1):012011.  https://doi.org/10.1088/1742-6596/560/1/012011 CrossRefGoogle Scholar
  42. Rahman P, Green M (2009) The synthesis of rare earth fluoride based nanoparticles. Nanoscale 1(2):214–224.  https://doi.org/10.1039/b9nr00089e CrossRefGoogle Scholar
  43. Saeger VW, Spedding FH (1960) Some physical properties of rare-earth chlorides in aqueous solution, Ames Laboratory Technical Reports. pp. 36, 46. http://lib.dr.iastate.edu/ameslab_isreports/46. Accessed 8 Feb 2018
  44. Savinkov AV, Korableva SL, Rodionov AA, Kurkin IN, Malkin BZ, Tagirov MS, Suzuki H, Matsumoto K, Abe S (2008) Magnetic properties of Dy3+ ions and crystal field characterization in YF3:Dy3+ and DyF3 single crystals. J Phys Condens Matter 20(48):485220.  https://doi.org/10.1088/0953-8984/20/48/485220 CrossRefGoogle Scholar
  45. Scherrer P (1918) Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. NGWGMPK 26:98–100Google Scholar
  46. Stouwdam JW, van Veggel FCJM (2002) Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+ doped LaF3 nanoparticles. Nano Lett 2(7):733–737.  https://doi.org/10.1021/nl025562q CrossRefGoogle Scholar
  47. Sun X, Zhang Y-W, Du Y-P, Yan Z-G, Si R, You L-P, Yan C-H (2007) From trifluoroacetate complex precursors to monodisperse rare-earth fluoride and oxyfluoride nanocrystals with diverse shapes through controlled fluorination in solution phase. Chem Eur J 13(8):2320–2332. https://doi.org/10.1002/chem.200601072Google Scholar
  48. Sun Y, Yu M, Liang S, Zhang Y, Li C, Mou T, Yang W, Zhang X, Li B, Huang C, Li F (2011) Fluorine-18 labeled rare-earth nanoparticles for positron emission tomography (PET) imaging of sentinel lymph node. Biomaterials 32(11):2999–3007.  https://doi.org/10.1016/j.biomaterials.2011.01.011 CrossRefGoogle Scholar
  49. Tagirov MS, Alakshin EM, Gazizulin RR, Egorov AV, Klochkov AV, Korableva SL, Kuzmin VV, Nizamutdinov AS, Kono K, Nakao A, Gubaidullin AT (2011) Spin kinetics of 3He in contact with synthesized PrF3 nanoparticles. J Low Temp Phys 162(5–6):645–652.  https://doi.org/10.1007/s10909-010-0329-6 CrossRefGoogle Scholar
  50. Tikhomirov VK, Seddon AB, Koch J, Wandt D, Chichkov BN (2005) Fabrication of buried waveguides and nanocrystals in Er3+-doped oxyfluoride glass. Phys Stat Sol (A) 202(7):R73–R75.  https://doi.org/10.1002/pssa.200510022 CrossRefGoogle Scholar
  51. Tissue BM (1998) Synthesis and luminescence of lanthanide ions in nanoscale insulating hosts. Chem Mater 10(10):2837–2845.  https://doi.org/10.1021/cm9802245 CrossRefGoogle Scholar
  52. Vetrone F, Capobianco JA (2008) Lanthanide-doped fluoride nanoparticles: luminescence, upconversion, and biological applications. Int J Nanotechnol 5(9–12):1306–1339.  https://doi.org/10.1504/IJNT.2008.019840 CrossRefGoogle Scholar
  53. Wang X, Li Y (2003a) Fullerene-like rare-earth nanoparticles. Angew Chem Int Ed 42(30):3497–3500.  https://doi.org/10.1002/anie.200351006 CrossRefGoogle Scholar
  54. Wang X, Li Y (2003b) Rare-earth-compound nanowires, nanotubes, and fullerene-like nanoparticles: synthesis, characterization, and properties. Chem Eur J 9(22):5627–5635.  https://doi.org/10.1002/chem.200304785 CrossRefGoogle Scholar
  55. Wang F, Liu X (2009) Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem Soc Rev 38(4):976–989.  https://doi.org/10.1039/b809132n CrossRefGoogle Scholar
  56. Wang X, Zhuang J, Peng Q, Li Y (2006) Hydrothermal synthesis of rare-earth fluoride nanocrystals. Inorg Chem 45(17):6661–6665.  https://doi.org/10.1021/ic051683s CrossRefGoogle Scholar
  57. Wang J, Bo S, Song L, Hu J, Liu X, Zhen Z (2007) One-step synthesis of highly water-soluble LaF3:Ln3+ nanocrystals in methanol without using any ligands. Nanotechnology 18(46):465606.  https://doi.org/10.1088/0957-4484/18/46/465606 CrossRefGoogle Scholar
  58. Wang M, Shi Y, Jiang G, Tang Y (2011) Room temperature synthesis and characterization of different morphological TbF3 nano/microcrystals. Mater Lett 65(12):1945–1948.  https://doi.org/10.1016/j.matlet.2011.03.102 CrossRefGoogle Scholar
  59. Warren BE, Averbach BL (1952) The separation of cold-work distortion and particle size broadening in X-ray patterns. J Appl Phys 23(4):497–498.  https://doi.org/10.1063/1.1702234 CrossRefGoogle Scholar
  60. Wei Y, Lu F, Zhang X, Chen D (2007) Polyol-mediated synthesis of water-soluble LaF3:Yb,Er upconversion fluorescent nanocrystals. Mater Lett 61(6):1337–1340.  https://doi.org/10.1016/j.matlet.2006.07.029 CrossRefGoogle Scholar
  61. Williamson GK, Hall WH (1953) X-ray line broadening from filed aluminium and wolfram. Acta Metall 1(1):22–31. https://doi.org/10.1016/0001-6160(53)90006-6Google Scholar
  62. Wu Y-F, Tian Y-W, Han Y-S, Zhai Y-C, Wang C-Z (2004) Synthesis of LaF3 superfine powder by microwave heating method. Trans Nonferrous Met Soc China 14(4):738–741Google Scholar
  63. Wyckoff RWG (1965) Crystal structures, 2nd edn. John Wiley & Sons, New YorkGoogle Scholar
  64. Xu F, Zhang L, Dong X, Liu Q, Komuro M (2011) Effect of DyF3 additions on the coercivity and grain boundary structure in sintered Nd–Fe–B magnets. Scr Mater 64(12):1137–1140.  https://doi.org/10.1016/j.scriptamat.2011.03.011 CrossRefGoogle Scholar
  65. Yan Z-G, Yan C-H (2008) Controlled synthesis of rare earth nanostructures. J Mater Chem 18(42):5046–5059.  https://doi.org/10.1039/b810586c CrossRefGoogle Scholar
  66. Ye R, Cui Z, Hua Y, Deng D, Zhao S, Li C, Xu S (2011) Eu2+/Dy3+ co-doped white light emission glass ceramics under UV light excitation. J Non-Cryst Solids 357(11–13):2282–2285.  https://doi.org/10.1016/j.jnoncrysol.2010.11.071 CrossRefGoogle Scholar
  67. Yi GS, Chow GM (2005a) Rare earth doped LaF3 nanocrystals for upconversion fluorescence. National University of Singapore, SingaporeGoogle Scholar
  68. Yi GS, Chow GM (2005b) Colloidal LaF3:Yb,Er, LaF3:Yb,Ho and LaF3:Yb,Tm nanocrystals with multicolor upconversion fluorescence. J Mater Chem 15(41):4460–4464.  https://doi.org/10.1039/b508240d CrossRefGoogle Scholar
  69. Zhang Y-W, Sun X, Si R, You L-P, Yan C-H (2005) Single-crystalline and monodisperse LaF3 triangular nanoplates from a single-source precursor. JACS 127(10):3260–3261.  https://doi.org/10.1021/ja042801y CrossRefGoogle Scholar
  70. Zhang M, Fan H, Xi B, Wang X, Dong C, Qian Y (2007) Synthesis, characterization, and luminescence properties of uniform Ln3+ doped YF3 nanospindles. J Phys Chem 111(18):6652–6657.  https://doi.org/10.1021/jp068919d CrossRefGoogle Scholar
  71. Zhao J, Zhu M, Mu L, Yang Z, Wang L, Gu L, Hu Y-S, Dai S, Liu H (2014) A phase transfer assisted solvo-thermal strategy for the synthesis of REF3 and Ln3+-doped REF3 nano−/microcrystals. J Colloid Interface Sci 436:171–178.  https://doi.org/10.1016/j.jcis.2014.08.067 CrossRefGoogle Scholar
  72. Zheng X, Wang Y, Sun L, Chen N, Li L, Shi S, Malaisamy S, Yan C (2016) TbF3 nanoparticles as dual-mode contrast agents for ultrahigh field magnetic resonance imaging and X-ray computed tomography. Nano Res 9(4):1135–1147.  https://doi.org/10.1007/s12274-016-1008-y CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • E. M. Alakshin
    • 1
  • E. I. Kondratyeva
    • 1
    • 2
  • D. S. Nuzhina
    • 1
  • M. F. Iakovleva
    • 3
  • V. V. Kuzmin
    • 1
  • K. R. Safiullin
    • 1
  • A. T. Gubaidullin
    • 4
  • T. Kikitsu
    • 5
  • K. Kono
    • 1
    • 5
  • A. V. Klochkov
    • 1
  • M. S. Tagirov
    • 1
    • 2
  1. 1.Kazan Federal University, Institute of PhysicsKazanRussian Federation
  2. 2.Institute of Applied Research, Tatarstan Academy of SciencesKazanRussian Federation
  3. 3.Leibniz Institute for Solid State and Materials Research, IFW DresdenDresdenGermany
  4. 4.A.E. Arbuzov Institute of Organic and Physical ChemistryKazan Scientific Center, Russian Academy of SciencesKazanRussia
  5. 5.RIKEN, Center for Emergent Matter Science (CEMS)SaitamaJapan

Personalised recommendations