Advertisement

Sulfur doped carbon nitride quantum dots with efficient fluorescent property and their application for bioimaging

  • Xiaohui Dai
  • Zhenwei Han
  • Hai FanEmail author
  • Shiyun AiEmail author
Research Paper
  • 96 Downloads

Abstract

Heteroatom doping can drastically alter electronic characteristics of carbon nitride quantum dots, thus resulting in unusual properties and related applications. Herein, we used sulfur as the doping element and investigated the influence of doping on the electronic distribution of carbon nitride and the corresponding fluorescent property. A simple synthetic strategy was applied to prepare sulfur-doped carbon nitride (S-g-C3N4) quantum dots through ultrasonic treatment of bulk S-g-C3N4. Characterization results demonstrated that the prepared S-g-C3N4 quantum dots with an average size of 2.0 nm were successfully prepared. Fluorescent properties indicated that S-g-C3N4 quantum dots have an emission peak at 460 nm and cover the emission spectra region up to 550 nm. Furthermore, the fluorescent intensity is greatly increased due to the sonication of bulk S-g-C3N4 into quantum dots. As a result, S-g-C3N4 quantum dots not only show a blue cell imaging, but have a bright green color. Therefore, S-g-C3N4 quantum dot is a promising candidate for bioimaging benefiting from the efficient fluorescent property, good biocompatibility, and low toxicity.

Keywords

Doped carbon nitride Quantum dots Fluorescent property Bioimaging In vitro cytotoxicity 

Notes

Funding information

This work was supported by the National Natural Science Foundation of China (NO. 21375079, NO. 51402175) and Project of Development of Science and Technology of Shandong Province, China (NO. 2013GZX20109).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Baker S, Baker G (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed 49(38):6726–6744.  https://doi.org/10.1002/anie.200906623 CrossRefGoogle Scholar
  2. Barman S, Sadhukhan M (2012) Facile bulk production of highly blue fluorescent graphitic carbon nitride quantum dots and their application as highly selective and sensitive sensors for the detection of mercuric and iodide ions in aqueous media. J Mater Chem 22(41):21832–21837.  https://doi.org/10.1039/c2jm35501a CrossRefGoogle Scholar
  3. Chen L, Huang D, Ren S, Dong T, Chi Y, Chen G (2013) Preparation of graphite-like carbon nitride nanoflake film with strong fluorescent and electrochemiluminescent activity. Nanoscale 5(1):225–230.  https://doi.org/10.1039/c2nr32248j CrossRefGoogle Scholar
  4. Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Ipe BI, Bawendi MG, Frangioni JV (2007) Renal clearance of quantum dots. Nat Biotechnol 25(10):1165–1170.  https://doi.org/10.1038/nbt1340 CrossRefGoogle Scholar
  5. Cui Q, Xu J, Wang X, Li L, Antonietti M, Shalom M (2016) Phenyl-modified carbon nitride quantum dots with distinct photoluminescence behavior. Angew Chem Int Ed 55(11):3672–3676.  https://doi.org/10.1002/anie.201511217 CrossRefGoogle Scholar
  6. Fan H, Zhang SX, Ju P, Su HC, Ai SY (2012) Flower-like Bi2Se3 nanostructures: synthesis and their application for the direct electrochemistry of hemoglobin and H2O2 detection. Electrochim Acta 64:171–176.  https://doi.org/10.1016/j.electacta.2012.01.010 CrossRefGoogle Scholar
  7. Gu YP, Cui R, Zhang ZL, Xie ZX, Pang DW (2011) Ultrasmall near-infrared Ag2Se quantum dots with tunable fluorescence for in vivo imaging. J Am Chem Soc 134(1):79–82.  https://doi.org/10.1021/ja2089553 CrossRefGoogle Scholar
  8. Guo S, Deng Z, Li M, Jiang B, Tian C, Pan Q, Fu H (2016) Phosphorus-doped carbon nitride tubes with a layered micro-nanostructure for enhanced visible-light photocatalytic hydrogen evolution. Angew Chem Int Ed 55(5):1830–1834.  https://doi.org/10.1002/anie.201508505 CrossRefGoogle Scholar
  9. Guo J, Lin Y, Huang H, Zhang S, Huang T, Weng W (2017) One-pot fabrication of fluorescent carbon nitride nanoparticles with high crystallinity as a highly selective and sensitive sensor for free chlorine. Sens Actuators B: Chem 244:965–971.  https://doi.org/10.1016/j.snb.2017.01.036 CrossRefGoogle Scholar
  10. Li H, Kang Z, Liu Y, Lee ST (2012) Carbon nanodots: synthesis, properties and applications. J Mater Chem 22(46):24230–24253.  https://doi.org/10.1039/c2jm34690g CrossRefGoogle Scholar
  11. Li H, Shao FQ, Huang H, Feng JJ, Wang AJ (2016) Eco-friendly and rapid microwave synthesis of green fluorescent graphitic carbon nitride quantum dots for vitro bioimaging. Sens Actuators B: Chem 226:506–511.  https://doi.org/10.1016/j.snb.2015.12.018 CrossRefGoogle Scholar
  12. Li Z, Tian B, Zhang W, Zhang X, Wu Y, Lu G (2017) Enhancing photoactivity for hydrogen generation by electron tunneling via flip-flop hopping over iodinated graphitic carbon nitride. Appl Catal B Environ 204:33–42.  https://doi.org/10.1016/j.apcatb.2016.11.020 CrossRefGoogle Scholar
  13. Liu S, Tian J, Wang L, Luo Y, Zhai J, Sun X (2011) Preparation of photoluminescent carbon nitride dots from CCl4 and 1, 2-ethylenediamine: a heat-treatment-based strategy. J Mater Chem 21(32):11726–11729.  https://doi.org/10.1039/c1jm12149a CrossRefGoogle Scholar
  14. Lu YC, Chen J, Wang AJ, Bao N, Feng JJ, Wang W, Shao L (2015) Facile synthesis of oxygen and sulfur co-doped graphitic carbon nitride fluorescent quantum dots and their application for mercury (II) detection and bioimaging. J Mater Chem C 3(1):73–78.  https://doi.org/10.1039/c4tc02111h CrossRefGoogle Scholar
  15. Shen J, Zhu Y, Yang X, Li C (2012) Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun 48(31):3686–3699.  https://doi.org/10.1039/c2cc00110a CrossRefGoogle Scholar
  16. Wang X, Maeda X, Chen X, Takanabe K, Domen K, Hou Y, Fu XZ, Antonietti M (2009) Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light. J Am Chem Soc 131(5):1680–1681.  https://doi.org/10.1021/ja809307s CrossRefGoogle Scholar
  17. Wang N, Fan H, Sun J, Han Z, Dong J, Ai S (2016) Fluorine-doped carbon nitride quantum dots: ethylene glycol-assisted synthesis, fluorescent properties, and their application for bacterial imaging. Carbon 109:141–148.  https://doi.org/10.1016/j.carbon.2016.08.004 CrossRefGoogle Scholar
  18. Zhang Y, Li Y, Yan XP (2009) Aqueous layer-by-layer epitaxy of type-II CdTe/CdSe quantum dots with near-infrared fluorescence for bioimaging applications. Small 5(2):185–189.  https://doi.org/10.1002/smll.200800473 CrossRefGoogle Scholar
  19. Zhang X, Xie X, Wang H, Zhang J, Pan B, Xie Y (2013) Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J Am Chem Soc 135(1):18–21.  https://doi.org/10.1021/ja308249k CrossRefGoogle Scholar
  20. Zhang G, Zhang M, Ye X, Qiu X, Lin S, Wang X (2014) Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution. Adv Mater 26(5):805–809.  https://doi.org/10.1002/adma.201303611 CrossRefGoogle Scholar
  21. Zhou J, Yang Y, Zhang C (2013) A low-temperature solid-phase method to synthesize highly fluorescent carbon nitride dots with tunable emission. Chem Commun 49(77):8605–8607.  https://doi.org/10.1039/c3cc42266f CrossRefGoogle Scholar
  22. Zimmer JP, Sang-Wook K, Shunsuke O, Eichii K, Frangioni JV, Bawendi MG (2006) Size series of small indium arsenide-zinc selenide core-shell nanocrystals and their application to in vivo imaging. J Am Chem Soc 12(8):2526–2527.  https://doi.org/10.1021/ja0579816 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.College of Chemistry and Material ScienceShandong Agricultural UniversityTai’anPeople’s Republic of China

Personalised recommendations