Surface potential of meso-dimensional ZnS:Mn particles obtained using SHS method

  • Yuriy Yu. BacherikovEmail author
  • Peter M. Lytvyn
  • Olga B. Okhrimenko
  • Anton G. Zhuk
  • Roman V. Kurichka
  • Aleksandr S. Doroshkevich
Research Paper


The dependence of surface potential value on the particle size of micro- and meso-fractions for powdered ZnS:Mn obtained using self-propagating high-temperature synthesis has been investigated. Rather good agreement of model representations for the change in the value of surface potential for the particle with its size changed due to overlapping the space charge regions from opposite surfaces within the range ~ 1 ≤ R/Leff ≤ ~ 2.2 (R, particle radius; Leff, screening length) with experimental data obtained using the method of Kelvin probe microscopy has been shown. The value of Leff for ZnS:Mn particles is estimated as approximately 30 nm.


ZnS:Mn Particle size Kelvin probe force microscopy Effective screening length Surface potential Nanoscale effects 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Aruna ST, Mukasyan AS (2008) Combustion synthesis and nanomaterials. Curr Opin Solid St M 12:44–50. CrossRefGoogle Scholar
  2. Bacherikov YY, Gilchuk AV, Zhuk AG, Kurichka RV, Okhrimenko OB, Zelensky SE, Kravchenko SA (2018) Nonmonotonic behavior of luminescence characteristics of fine-dispersed self-propagating high-temperature synthesized ZnS:Mn depending on size of its particles. J Lumin 194:8–14. CrossRefGoogle Scholar
  3. Cavallo C, Pascasio FD, Latini A, Bonomo M, Dini D (2017) Nanostructured semiconductor materials for dye-sensitized solar cells. J Nanomater 2017:5323164–5323131. CrossRefGoogle Scholar
  4. Cohen G, Halpern E, Nanayakkara SU, Luther JM, Held C, Bennewitz R, Boag A, Rosenwaks Y (2013) Reconstruction of surface potential from Kelvin probe force microscopy images. Nanotechnology 24:295702. CrossRefGoogle Scholar
  5. Georgen B, Nienhaus H, Weinberg WH, Farland EM (2001) Chemically induced electronic excitations at metal surfaces. Science 294:2521–2523. CrossRefGoogle Scholar
  6. Gleiter H (2000) Nanostructured materials: basic concept and microstructure. Acta Mater 48:1–29. CrossRefGoogle Scholar
  7. Haisler VA, Haisler AV, Derebezov IA, Yaroshevich AS, Bakarov AK, Dmitriev DV et al (2017) Advances in semiconductor nanostructures 1st edition, growth, characterization, properties and applications. In: Latyshev A, Dvurechenskii A, Aseev A (eds) Superminiature radiation sources based on semiconductor nanostructures. Elsevier :437–461.
  8. Ihn T (2010) Semiconductor nanostructures: quantum states and electronic transport. Oxford University Press Inc, New York. CrossRefGoogle Scholar
  9. Lytvyn PM (2014) Functional nanomaterials and devices for electronics, sensors and energy harvesting. In: Nazarov A, Balestra F, Kilchytska V, Flandre D (eds) Scanning probe microscopy in practical diagnostic: 3D topography imaging and nanometrology. Springer, Berlin, pp 179–219. CrossRefGoogle Scholar
  10. Machleidt T, Sparrer E, Kapusi D, Franke KH (2009a) Deconvolution of Kelvin probe force microscopy measure-ments – methodology and application. Meas Sci Technol 20:084017. CrossRefGoogle Scholar
  11. Machleidt T, Sparrer E, Kubertschak T, Nestler R, Franke KH (2009b) Kelvin probe force microscopy: measurement data reconstruction. Proceedings of SPIE, Monterey, California 7378:73781C–73781C9.
  12. Merzhanov AG, Rogachev AS (1992) Structural macrokinetics of SHS processes. Pure Appl Chem 64:941–953. CrossRefGoogle Scholar
  13. Miyahara Y, Cockins L, Gruutter P (2011) Kelvin probe force microscopy, measuring and compensating electrostatic forces. In: Sadewasser S, Glatzel T (eds) Electrostatic force microscopy characterization of low dimensional systems. Springer, Berlin, pp 175–201. CrossRefGoogle Scholar
  14. NanoWorld (2001) NanoWorld AFM Probes Brochure: Electrostatic Force Microscopy - PtIr5 coatingGoogle Scholar
  15. Nonnenmacher M, O’Boyle MP, Wickramasinghe HK (1991) Kelvin probe force microscopy. Appl Phys Lett 58:2921–2923. CrossRefGoogle Scholar
  16. Reithmaier JP (2009) Nanostructured semiconductor materials for optoelectronic applications. In: Reithmaier JP, Petkov P, Kulisch W, Popov C (eds) Nanostructured materials for advanced technological applications. NATO science for peace and security, series B: physics and biophysics. Springer, Dordrecht, pp 447–476. CrossRefGoogle Scholar
  17. Rockett A (2008) The materials science of semiconductors. Springer, New York. CrossRefGoogle Scholar
  18. Rosenwaks Y, Saraf S, Tal O, Schwarzman A, Glatzel T, Lux-Steiner MC (2007) Scanning probe microscopy, electrical and electromechanical phenomena at the nanoscale. In: Kalinin S, Gruverman A (eds) Kelvin probe force microscopy of semiconductors. Springer, New York, pp 663–690. CrossRefGoogle Scholar
  19. Rubenstein M (1977) Zn-rich liquids of Zn-S system between 1000 and 1300 C°. J Cryst Growth 41:311–316. CrossRefGoogle Scholar
  20. Strassburg E, Boag A, Rosenwaks Y (2005) Reconstruction of electrostatic force microscopy images. Rev Sci Instrum 76:083705. CrossRefGoogle Scholar
  21. Villarrubia JS (1997) Algorithms for scanned probe microscope image simulation, surface reconstruction, and tip estimation. J Res Natl Inst Stand Technol 102:425–454. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Yuriy Yu. Bacherikov
    • 1
    Email author
  • Peter M. Lytvyn
    • 1
  • Olga B. Okhrimenko
    • 1
  • Anton G. Zhuk
    • 1
  • Roman V. Kurichka
    • 1
  • Aleksandr S. Doroshkevich
    • 2
    • 3
  1. 1.V.Ye. Lashkaryov Institute of Semiconductor Physics, NAS of the UkraineKyivUkraine
  2. 2.Joint Institute for Nuclear ResearchDubnaRussian Federation
  3. 3.Donetsk Institute for Physics and EngineeringKyivUkraine

Personalised recommendations