Multi-mode photocatalytic performances of CdS QDs modified CdIn2S4/CdWO4 nanocomposites with high electron transfer ability

  • Yannan Liu
  • Li LiEmail author
  • Run Wang
  • Jieyun Li
  • Jiwei Huang
  • Wenzhi ZhangEmail author
Research Paper


In general, quantum dots have the property of generating a plurality of charge carriers using hot electrons or using a single high-energy photon to improve the photocatalytic properties of the material. In this paper, CdS QDs@CdIn2S4/CdWO4 modified by CdS QDs was synthesized by the microwave-assisted hydrothermal method, and its composition, crystal structure, morphology, and surface physicochemical properties were well characterized. Electron microscopy results showed that CdS QDs@CdIn2S4/CdWO4 composite material exhibited a sheet structure with a length of ca. 350 nm and a width of ca. 50 nm, and CdS QDs uniformly distributes with a diameter of about 5 nm on the sheet structure. UV-visible diffuse reflectance tests showed that the combination of CdS QDs and CdIn2S4 can extend the light absorption range of CdWO4 to the visible region. Photoluminescence spectroscopy confirmed that CdS QDs had efficient electron transport capabilities. The multi-mode photocatalytic activity of CdS QDs@CdIn2S4/CdWO4 showed an excellent ability to degrade organic pollutants. Under the conditions of no co-catalyst and Na2S-Na2SO3 as the sacrificial agent, the hydrogen production of CdS QDs@CdIn2S4/CdWO4 can reach 221.3 μmol g−1 when exposed to visible light (λ > 420 nm) for 8 h.

Graphical abstract

Multi-mode photocatalytic performances of CdS QDs modified CdIn2S4/CdWO4 nanocomposites with high electron transfer ability.

Due to CdS QDs owning stronger electron transfer ability, CdS QDs@CdIn2S4/CdWO4 exhibited higher activity in multi-mode photocatalytic processes and the enhanced activity in splitting water into hydrogen.


Microwave-assisted hydrothermal method CdS QDs CdIn2S4 CdWO4 Multimode photocatalysis H2 evolution Quantum dots 


Funding information

This study is supported by the National Natural Science Foundation of China (21376126, 21776144), the Fundamental Research Funds in Heilongjiang Provincial Universities (135209105), Government of Heilongjiang Province Postdoctoral Grants, China (LBH-Z11108), Postdoctoral Researchers in Heilongjiang Province of China Research Initiation Grant Project (LBH-Q13172), Innovation Project of Qiqihar University Graduate Education (YJSCX2017-021X), College Students’ Innovative Entrepreneurial Training Program Funded Projects of Qiqihar University (201810232056), and Qiqihar University in 2016 College Students Academic Innovation Team Funded Projects.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11051_2018_4412_MOESM1_ESM.doc (851 kb)
ESM 1 (DOC 851 kb)


  1. Aslam I, Cao C, Tanveer M, Farooq MH, Khan WS, Tahir M, Idrees F, Khalid S (2014) A novel Z-scheme WO3/CdWO4 photocatalyst with enhanced visible-light photocatalytic activity for the degradation of organic pollutants. RSC Adv 5(8):6019–6026. CrossRefGoogle Scholar
  2. Bi Y, Ouyang S, Cao J, Ye J (2011) Facile synthesis of rhombic dodecahedral AgX/Ag3PO4 (X = Cl, Br, I) heterocrystals with enhanced photocatalytic properties and stabilities. PCCP 13(21):10071–10075. CrossRefGoogle Scholar
  3. Carević MV, Čomor MI, Mitrić MN, Barudžija TS, Ahrenkiel SP, Abazović ND (2015) The influence of reaction media on CdIn2S4 and ZnIn2S4 nanocrystallite formation and growth of mesocrystal structures. CrystEngComm 17:8492–8499. CrossRefGoogle Scholar
  4. Chen X, Li L, Zhang W, Li Y, Song Q, Zhang J, Liu D (2016a) Multi-pathway photoelectron migration in globular flower-like In2O3/AgBr/Bi2WO6, synthesized by microwave-assisted method with enhanced photocatalytic activity. J Mol Catal A Chem 414(27):27–36. CrossRefGoogle Scholar
  5. Chen X, Li L, Zhang W, Li Y, Song Q, Dong L (2016b) Fabricate globular flower-like CuS/CdIn2S4/ZnIn2S4 with high visible light response via microwave-assisted one–step method and its multi-pathway photoelectron migration properties for hydrogen evolution and pollutant degradation. ACS Sustanin. Chem Eng 4(12):6680–6688. CrossRefGoogle Scholar
  6. Chen W, Huang T, Hua YX, Liu TY, Liu XH, Chen S (2016c) Hierarchical CdIn2S4 microspheres wrapped by mesoporous g-C3N4 ultrathin nanosheets with enhanced visible light driven photocatalytic reduction activity. J Hazard Mater 320:529–538. CrossRefGoogle Scholar
  7. Cheng F, Yin H, Xiang Q (2017) Low-temperature solid-state preparation of ternary CdS/g-C3N4/CuS nanocomposites for enhanced visible-light photocatalytic H2-production activity. Appl Surf Sci 391:432–439. CrossRefGoogle Scholar
  8. Ge L, Zuo F, Liu J, Ma Q, Wang C, Sun D, Bartels L, Feng P (2012) Synthesis and efficient visible light photocatalytic hydrogen evolution of polymeric g-C3N4 coupled with CdS quantum dots. J Phys Chem C 116(25):13708–13714. CrossRefGoogle Scholar
  9. Hussain H, Tocci G, Woolcot T, Torrelles X, Pang CL, Humphrey DS, Yim CM, Grinter DC, Cabailh G, Bikondoa O, Lindsay R, Zegenhagen J, Michaelides A, Thornton G (2017) Structure of a model TiO2 photocatalytic interface. Nature Mat 16(4):461–4660. CrossRefGoogle Scholar
  10. Jia X, Tahir M, Pan L, Huang ZF, Zhang X, Wang L, Zou JJ (2016) Direct Z-scheme composite of CdS and oxygen-defected CdWO4: an efficient visible-light-driven photocatalyst for hydrogen evolution. Appl Catal B-Environ 198:154–161. CrossRefGoogle Scholar
  11. Kandi D, Martha S, Parida KM (2017) Quantum dots as enhancer in photocatalytic hydrogen evolution: a review. Int J Hydrog Energy 42(15):9467–9481. CrossRefGoogle Scholar
  12. Khanchandani S, Srivastava PK, Kumar S, Ghosh S, Ganguli AK (2014) Band gap engineering of ZnO using core/shell morphology with environmentally benign Ag2S sensitizer for efficient light harvesting and enhanced visible-light photocatalysis. Inorg Chem 53(17):8902–8912. CrossRefGoogle Scholar
  13. Lei G, Jing L (2011) Efficient visible light-induced photocatalytic degradation of methyl orange by QDs sensitized CdS-Bi2WO6. Appl Catal B-Environ 105(3–4):289–297. CrossRefGoogle Scholar
  14. Liu X, Chen Q, Wang R, Wang L, Yu X, Cao J, Zhou Y, Sun H (2015) Simultaneous femtosecond laser doping and surface texturing for implanting applications. Adv Mater Interfaces 2(9).
  15. Ling Y, Zhou L, Tan L, Wang Y, Yu C (2010) Synthesis of urchin-like CdWO4 microspheres via a facile template free hydrothermal method. Crystengcomm 12(10):3019–3026. CrossRefGoogle Scholar
  16. Liang Y, Lin S, Hu J, Li L, McEvoy J G, Cui Wet al (2014) Facile hydrothermal synthesis of nanocomposite Ag@AgCl/K2Ti4O9, and photocatalytic degradation under visible light irradiation. J Mol Catal A Chem 383–384(3):231–238.
  17. Ma D, Shi JW, Zou Y, Fan Z, Ji X, Niu C (2017) Highly efficient photocatalyst based on a CdS quantum dots/ZnO Nanosheets 0D/2D heterojunction for hydrogen evolution from water splitting. ACS Appl Mat Interfaces 9(30):25377–25386. CrossRefGoogle Scholar
  18. Mao P, Qi L, Liu X, Liu Y, Jiao Y, Chen S, Yang Y (2016) Synthesis of Cu/Cu2O hydrides for enhanced removal of iodide from water. J Hazard Mater 328:21–28. CrossRefGoogle Scholar
  19. Mahadadalkar MA, Kale SB, Kalubarme RS, Bhirud AP, Ambekar JD, Gosavi SW, Kulkarni MV, Park CJ, Kale BB (2016) Architecture of CdIn2S4/graphene nano-heterostructure for solar hydrogen production and anode for lithium ion battery. RSC Adv 6(41):34724–34736. CrossRefGoogle Scholar
  20. Mahadadalkar MA, Gosavi SW, Kale BB (2018) Interstitial charge transfer pathways in a TiO2/CdIn2S4 heterojunction photocatalyst for direct conversion of sunlight into fuel. J Mater ChemA 6:16064–16073. CrossRefGoogle Scholar
  21. Mousavikamazani M, Zarghami Z, Salavatiniasari M, Amiri O (2016) CdIn2S4 quantum dots: novel solvent-free synthesis, characterization and enhancement of dye-sensitized solar cells performance. RSC Adv 6:39801–39809. CrossRefGoogle Scholar
  22. Pan L, Muhammad T, Ma L, Huang ZF, Wang S, Wang L, Zou J, Zhang X (2016) MOF-derived C-doped ZnO prepared via, a two-step calcination for efficient photocatalysis. Appl Catal B-Environ 189:181–191. CrossRefGoogle Scholar
  23. Qian Y, Yang M, Zhang F, Du J, Li K, Lin X, Zhu X, Lu Y, Wang W (2018) A stable and highly efficient visible-light-driven hydrogen evolution porous CdS/WO3/TiO2, photocatalysts. Mater Charact 142:43–49. CrossRefGoogle Scholar
  24. Reddy KG, Deepak TG, Anjusree GS, Thomas S, Vadukumpully S, Subramanian KR, Nair SV, Nair AS (2014) On global energy scenario, dye-sensitized solar cells and the promise of nanotechnology. PCCP 16(15):6838–6858. CrossRefGoogle Scholar
  25. Rokhsat E, Akhavan O (2016) Improving the photocatalytic activity of graphene oxide/ZnO nanorod films by UV irradiation. Appl Surf Sci 371:590–595. CrossRefGoogle Scholar
  26. Shi J, Tong R, Zhou X, Gong Y, Zhang Z, Ji Q, Zhang Y, Fang Q, Gu L, Wang X, Liu Z, Zhang Y (2016) Temperature-mediated selective growth of MoS2/WS2 and WS2/MoS2 vertical stacks on Au foils for direct photocatalytic. Adv Mater 28(48):10664–10672. CrossRefGoogle Scholar
  27. Wang C, Wang L, Jin J, Liu J, Li Y, Wu M, Chen L, Wang B, Yang X, Su B (2016a) Probing effective photocorrosion inhibition and highly improved photocatalytic hydrogen production on monodisperse PANI@CdS core-shell nanospheres. Appl Catal B-Environ 188:351–359. CrossRefGoogle Scholar
  28. Wang CY, Zhang X, Song XN, Wang WK, Yu HQ (2016b) Novel Bi12O15Cl6 photocatalyst for the degradation of bisphenol A under visible-light irradiation. ACS Appl Mat Interfaces 8(8):5320–5326. CrossRefGoogle Scholar
  29. Wang M, Zhang H, Zu H, Zhang Z, Han J (2018) Construction of TiO2/CdS heterojunction photocatalysts with enhanced visible light activity. Appl Surf Sci 455:729–735. CrossRefGoogle Scholar
  30. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8(1):76–80. CrossRefGoogle Scholar
  31. Xia J, Ji M, Di J, Wang B, Yin S, Zhang Q, He M, Li H (2016) Construction of ultrathin C3N4/Bi4O5I2, layered nanojunctions via ionic liquid with enhanced photocatalytic performance and mechanism insight. Appl Catal B-Environ 191:235–245. CrossRefGoogle Scholar
  32. Xu W, Zheng C, Hua H, Yang Q, Chen L, Xi Y, Hu C (2015) Synthesis and photoelectrochemical properties of CdWO4, and CdS/CdWO4, nanostructures. Appl Surf Sci 327:140–148. CrossRefGoogle Scholar
  33. Yan X, Wu Z, Huang C, Liu K, Shi W (2017) Hydrothermal synthesis of CdS/CoWO4, heterojunctions with enhanced visible light properties toward organic pollutants degradation. Ceram Int 2017 43(7):5388–5395. CrossRefGoogle Scholar
  34. Ye D, Li D, Zhang W, Sun M, Hu Y, Zhang Y, Fu X (2008) A new photocatalyst CdWO4 prepared with a hydrothermal method. J Phys Chem C 112(44):17351–17356. CrossRefGoogle Scholar
  35. Yu X, Ren N, Qiu J, Sun D, Li L, Liu H (2018) Killing two birds with one stone: to eliminate the toxicity and enhance the photocatalytic property of CdS nanobelts by assembling ultrafine TiO2 nanowires on them. Sol Energy Mater Sol Cells 183:41–47. CrossRefGoogle Scholar
  36. Zang H, Li H, Makarov NS, Velizhanin KA, Wu K, Park YS, Klimov VI (2017) Thick-shell CuInS2/ZnS quantum dots with suppressed “blinking” and narrow single-particle emission line widths. Nano Lett 17(3):1787–1795. CrossRefGoogle Scholar
  37. Zhan F, Li J, Li W, Yang Y, Liu W, Li Y (2016) In situ synthesis of CdS/CdWO4/WO3, heterojunction films with enhanced photoelectrochemical properties. J Power Sources 325(20):591–597. CrossRefGoogle Scholar
  38. Zhang W, Yang H, Fu W, Li M, Li Y, Yu W (2013) Directly hydrothermal growth of CdIn2S4, nanosheet films on FTO substrates for photoelectric application. J Alloy Compd 561(10):10–15. CrossRefGoogle Scholar
  39. Zhang C, Guo D, Xu W, Hu C, Chen Y (2016) Radiative/nonradiative recombination affected by defects and electron-phone coupling in CdWO4 nanorods. J Phys Chem C 120(22):12218–12225. CrossRefGoogle Scholar
  40. Zheng Y, Hirayama M, Taminato S, Lee S, Oshima Y, Takayanagi K, Suzuki K, Kanno R (2015) Reversible lithium intercalation in a lithium-rich layered rocksalt Li2RuO3, cathode through a Li3PO4, solid electrolyte. J Power Sources 300:413–418. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringQiqihar UniversityQiqiharChina
  2. 2.College of Chemistry and Chemical EngineeringQiqihar UniversityQiqiharChina

Personalised recommendations