Advertisement

The synthesis of graphene-TiO2/g-C3N4 super-thin heterojunctions with enhanced visible-light photocatalytic activities

  • Shuaiqi Gong
  • Zhengjun Jiang
  • Sheng ZhuEmail author
  • Jinchen Fan
  • Qunjie XuEmail author
  • Yulin MinEmail author
Research Paper
  • 114 Downloads

Abstract

In this paper, an efficient strategy for the synthesis of graphene nanobelt-titanium dioxide/graphitic carbon nitride (graphene-TiO2/g-C3N4) heterostructure photocatalyst was applied to fabricate a kind of visible-light-driven photocatalyst. The heterostructure shows higher absorption edge towards harvesting more solar energy compared with pure TiO2 and pure g-C3N4 respectively. Furthermore, the as-prepared graphene-TiO2/g-C3N4 heterostructure can show enhanced photocatalytic activity under visible-light irradiation. These outstanding performances of photocatalytic activities for graphene-TiO2/g-C3N4 composites can be attributed to the heterojunction interfaces which can separate the electron-hole pairs and impede the recombination of electrons and holes more efficiently. This study conclusively demonstrates a facile and environmentally friendly new strategy to design highly efficient graphene-TiO2/g-C3N4 heterostructure photocatalytic materials for potential applications under visible-light irradiation.

Graphical abstract

Keywords

Graphene Heterojunction Visible light Photocatalytic activity Nanostructured catalysts 

Notes

Funding information

This work was supported by the National Natural Science Foundation of China (NSFC) (grant nos. 21671133, 21271010, 21604051, 21507081), the Shanghai Municipal Education Commission (no. 15ZZ088, no.15SG49), Technology Commission of Shanghai Municipality (18020500800), and International Joint Laboratory on Resource Chemistry.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11051_2018_4399_MOESM1_ESM.docx (94 kb)
ESM 1 (DOCX 93 kb)

References

  1. Akhavan O, Abdolahad M, Abdi Y, Mohajerzadeh S (2009) Synthesis of titania/carbon nanotube heterojunction arrays for photoinactivation of E. coli in visible light irradiation. Carbon 47(14):3280–3287CrossRefGoogle Scholar
  2. And YC, Choi W, Lee CH, Taeghwan Hyeon A, Lee HI (2001) Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2. Environ Sci Technol 35(5):966–970CrossRefGoogle Scholar
  3. Ardo S, Meyer GJ (2009) Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces. Chem Soc Rev 38(1):115–164CrossRefGoogle Scholar
  4. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293(5528):269–271CrossRefGoogle Scholar
  5. Cai L, Cho IS, Logar M, Mehta A, He J, Lee CH, Rao PM, Feng Y, Wilcox J, Prinz FB (2014) Sol-flame synthesis of cobalt-doped TiO2 nanowires with enhanced electrocatalytic activity for oxygen evolution reaction. Phys Chem Chem Phys 16(24):12299–12306CrossRefGoogle Scholar
  6. Cai J, Wang Y, Zhu Y, Wu M, Zhang H, Li X, Jiang Z, Meng M (2015) In situ formation of disorder-engineered tio2(b)-anatase heterophase junction for enhanced photocatalytic hydrogen evolution. ACS Appl Mater Interfaces 7(45):24987–24992CrossRefGoogle Scholar
  7. Cao S, Yu J (2013) G-c3n4-based photocatalysts for hydrogen generation. J Phys Chem Lett 4(5):2101–2107Google Scholar
  8. Cao S, Low J, Yu J, Jaroniec M (2015) Polymeric photocatalysts based on graphitic carbon nitride. Adv Mater 27(13):2150–2176CrossRefGoogle Scholar
  9. Chen X, Liu L, Yu PY, Mao SS (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331(6018):746–750CrossRefGoogle Scholar
  10. Gao ZD, Qu YF, Zhou X, Wang L, Song YY, Schmuki P (2016) Pt-decorated g-c3n4/TiO2 nanotube arrays with enhanced visible-light photocatalytic activity for H2 evolution. Chemistryopen 5(3):197–200CrossRefGoogle Scholar
  11. Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK (2013) Cheminform abstract: photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew Chem Int Ed 52(29):7372–7408CrossRefGoogle Scholar
  12. Hirakawa T, Kamat PV (2005) Charge separation and catalytic activity of ag@TiO2 core-shell composite clusters under UV-irradiation. J Am Chem Soc 127(11):3928–3934CrossRefGoogle Scholar
  13. Hirsch A (2009) Unzipping carbon nanotubes: a peeling method for the formation of graphene nanoribbons. Angew Chem Int Ed 48(36):6594–6596CrossRefGoogle Scholar
  14. Jiang Z, Zhu C, Wan W, Qian K, Xie J (2015) Constructing graphite-like carbon nitride modified hierarchical yolk–shell TiO2 spheres for water pollution treatment and hydrogen production. J Mater Chem A 4(5):1806–1818CrossRefGoogle Scholar
  15. Kai L, Gao S, Wang Q, Hui X, Wang Z, Huang B, Ying D, Lu J (2015) In-situ-reduced synthesis of Ti3+ self-doped TiO2/g-c3n4 heterojunctions with high photocatalytic performance under led light irradiation. ACS Appl Mater Interfaces 7(17):9023–9030CrossRefGoogle Scholar
  16. Kim DW, Kim YH, Jeong HS, Jung HT (2011) Direct visualization of large-area graphene domains and boundaries by optical birefringency. Nat Nanotechnol 7(1):29–34CrossRefGoogle Scholar
  17. Kleinfeld E, Ton-That T (2013) Novel visible light active graphitic c3n4–TiO2 composite photocatalyst: synergistic synthesis, growth and photocatalytic treatment of hazardous pollutants. Appl Catal B Environ 142–143(5):718–728Google Scholar
  18. Li XF, Wang LL, Chen KQ, Luo Y (2011) Design of graphene-nanoribbon heterojunctions from first principles. J Phys Chem C 115(25):12616–12624CrossRefGoogle Scholar
  19. Li Q, Zhang N, Yang Y, Wang G, Ng DH (2014) High efficiency photocatalysis for pollutant degradation with mos2/c3n4 heterostructures. Langmuir the Acs Journal of Surfaces & Colloids 30(29):8965–8972CrossRefGoogle Scholar
  20. Liu J, Bai H, Wang Y, Liu Z, Zhang X, Sun DD (2010) Self-assembling tionanorods on large graphene oxide sheets at a two-phase interface and their anti-recombination in photocatalytic applications. Adv Funct Mater 20(23):4175–4181CrossRefGoogle Scholar
  21. Liu G, Yin LC, Wang J, Niu P, Zhen C, Xie Y, Cheng HM (2012) A red anatase TiO2 photocatalyst for solar energy conversion. Energy Environ Sci 5(11):9603–9610CrossRefGoogle Scholar
  22. Liu J, Liu Y, Liu N, Han Y, Zhang X, Huang H, Lifshitz Y, Lee ST, Zhong J, Kang Z (2015) Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Cheminform 46(23):970–974Google Scholar
  23. Lu YH, Wu RQ, Shen L, Yang M, Sha ZD, Cai YQ, He PM, Feng YP (2009) Effects of edge passivation by hydrogen on electronic structure of armchair graphene nanoribbon and band gap engineering. Appl Phys Lett 94(12):491CrossRefGoogle Scholar
  24. Lu Q, Yu Y, Ma Q, Chen B, Zhang H (2016) 2d transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Adv Mater 28(10):1917–1933CrossRefGoogle Scholar
  25. Manga KK, Zhou Y, Yan Y, Loh KP (2010) Multilayer hybrid films consisting of alternating graphene and titania nanosheets with ultrafast electron transfer and photoconversion properties. Adv Funct Mater 19(22):3638–3643CrossRefGoogle Scholar
  26. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O'Shea K (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ 125(33):331–349CrossRefGoogle Scholar
  27. Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114(19):9919–9986CrossRefGoogle Scholar
  28. Shah MSAS, Park AR, Zhang K, Park JH, Yoo PJ (2012) Green synthesis of biphasic TiO2-reduced graphene oxide nanocomposites with highly enhanced photocatalytic activity. ACS Appl Mater Interfaces 4(8):3893–3901CrossRefGoogle Scholar
  29. Tao J, Luttrell T, Batzill M (2011) A two-dimensional phase of tio2 with a reduced bandgap. Nat Chem 3(4):296–300CrossRefGoogle Scholar
  30. Tu W, Zhou Y, Zou Z (2013) Versatile graphene-promoting photocatalytic performance of semiconductors: basic principles, synthesis, solar energy conversion, and environmental applications. Adv Funct Mater 23(40):4996–5008CrossRefGoogle Scholar
  31. Wan Z, Zhang G, Wu X, Yin S (2017) Novel visible-light-driven z-scheme bi12geo20/g-c3n4 photocatalyst: oxygen-induced pathway of organic pollutants degradation and proton assisted electron transfer mechanism of cr(vi) reduction. Appl Catal B Environ 207:17–26CrossRefGoogle Scholar
  32. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible|[nbsp]|light. Nat Mater 8(1):76–80CrossRefGoogle Scholar
  33. Wang X, Blechert S, Antonietti M (2012) Polymeric graphitic carbon nitride for heterogeneous photocatalysis. ACS Catal 2(8):1596–1606CrossRefGoogle Scholar
  34. Wang XJ, Yang WY, Li FT, Xue YB, Liu RH, Hao YJ (2013) In situ microwave-assisted synthesis of porous n-TiO2/g-c3n4 heterojunctions with enhanced visible-light photocatalytic properties. Ind Eng Chem Res 52(48):17140–17150CrossRefGoogle Scholar
  35. Wang H, Zhang L, Chen Z, Hu J, Li S, Wang Z, Liu J, Wang X (2014) Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Cheminform 43(15):5234–5244Google Scholar
  36. Wang S, Pan L, Song JJ, Mi W, Zou JJ, Wang L, Zhang X (2015) Titanium-defected undoped anatase TiO2 with p-type conductivity, room-temperature ferromagnetism, and remarkable photocatalytic performance. J Am Chem Soc 137(8):2975–2983CrossRefGoogle Scholar
  37. Williams G, Seger B, Kamat PV (2008) TiO2-graphene nanocomposites. Uv-assisted photocatalytic reduction of graphene oxide. ACS Nano 2(7):1487–1491CrossRefGoogle Scholar
  38. Wu JM, Zhang TW, Zeng YW, Hayakawa S, Tsuru K, Osaka A (2005) Large-scale preparation of ordered titania nanorods with enhanced photocatalytic activity. Langmuir the Acs Journal of Surfaces & Colloids 21(15):6995–7002CrossRefGoogle Scholar
  39. Xiang Q, Yu J, Jaroniec M (2011) Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/c3n4 composites. J Phys Chem C 115(15):7355–7363CrossRefGoogle Scholar
  40. Xiang Q, Yu J, Jaroniec M (2012) Synergetic effect of mos2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J Am Chem Soc 134(15):6575–6578CrossRefGoogle Scholar
  41. Xie Y, Heo SH, Yoo SH, Ali G, Cho SO (2010) Synthesis and photocatalytic activity of anatase TiO2 nanoparticles-coated carbon nanotubes. Nanoscale Res Lett 5(3):603–607CrossRefGoogle Scholar
  42. Xing M, Fang W, Yang X, Tian B, Zhang J (2014) Highly-dispersed boron-doped graphene nanoribbons with enhanced conductibility and photocatalysis. Chem Commun 50(50):6637–6640CrossRefGoogle Scholar
  43. Xu M, Han L, Dong S (2013) Facile fabrication of highly efficient g-c3n4/ag2o heterostructured photocatalysts with enhanced visible-light photocatalytic activity. Appl Mater Interfaces 5(23):12533–12540CrossRefGoogle Scholar
  44. Xu S, Hu Y, Zheng M, Wei C (2016) Solvent-free in situ synthesis of g-c3n4/{0 0 1}TiO2 composite with enhanced uv- and visible-light photocatalytic activity for no oxidation. Appl Catal B Environ 182(5):587–597Google Scholar
  45. Xue J, Ma S, Zhou Y, Wang Q (2015) Au-loaded porous graphitic c3n4/graphene layered composite as a ternary plasmonic photocatalyst and its visible-light photocatalytic performance. RSC Adv 5(107):88249–88257CrossRefGoogle Scholar
  46. Yan SC, Li ZS, Zou ZG (2009) Photodegradation performance of g-c3n4 fabricated by directly heating melamine. Langmuir 25(17):10397–10401CrossRefGoogle Scholar
  47. Yu Y, Yu JC, Yu JG, Kwok YC, Che YK, Zhao JC, Ding L, Ge WK, Wong PK (2005) Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes. Appl Catal A Gen 289(2):186–196CrossRefGoogle Scholar
  48. Yu J, Low J, Xiao W, Zhou P, Jaroniec M (2014) Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed {001} and {101} facets. J Am Chem Soc 136(25):8839–8842CrossRefGoogle Scholar
  49. Zhang H, Lv X, Li Y, Wang Y, Li J (2010) P25-graphene composite as a high performance photocatalyst. ACS Nano 4(1):380–386CrossRefGoogle Scholar
  50. Zhang N, Zhang Y, Xu YJ (2012) Recent progress on graphene-based photocatalysts: current status and future perspectives. Nanoscale 4(19):5792–5813CrossRefGoogle Scholar
  51. Zhang G, Zhang M, Ye X, Qiu X, Lin S, Wang X (2014) Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution. Adv Mater 26(5):805–809CrossRefGoogle Scholar
  52. Zhao W, Ma W, Chen C, Zhao J, Shuai Z (2004) Efficient degradation of toxic organic pollutants with ni2o3/tio(2-x)bx under visible irradiation. J Am Chem Soc 126(15):4782–4783CrossRefGoogle Scholar
  53. Zheng Y, Liu J, Liang J, Jaroniec M, Qiao SZ (2012) Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis. Energy Environ Sci 5(5):6717–6731CrossRefGoogle Scholar
  54. Zheng Y, Lin L, Ye X, Guo F, Wang X (2014) Helical graphitic carbon nitrides with photocatalytic and optical activities. Angew Chem Int Ed 53(44):11926–11930CrossRefGoogle Scholar
  55. Zhou W, Hong L, Wang J, Liu D, Du G, Cui J (2010) Ag2o/TiO2 nanobelts heterostructure with enhanced ultraviolet and visible photocatalytic activity. ACS Appl Mater Interfaces 2(8):2385–2392CrossRefGoogle Scholar
  56. Zhu YP, Ren TZ, Yuan ZY (2015) Mesoporous phosphorus-doped g-c3n4 nanostructured flowers with superior photocatalytic hydrogen evolution performance. ACS Appl Mater Interfaces 7(30):16850–16856CrossRefGoogle Scholar
  57. Zhu Z, Lu Z, Wang D, Tang X, Yan Y, Shi W, Wang Y, Gao N, Yao X, Dong H (2016) Construction of high-dispersed ag/fe3o4/g-c3n4 photocatalyst by selective photo-deposition and improved photocatalytic activity. Appl Catal B Environ 182:115–122CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange SystemsShanghai University of Electric PowerShanghaiPeople’s Republic of China
  2. 2.Shanghai Institute of Pollution Control and Ecological SecurityShanghaiPeople’s Republic of China
  3. 3.College of Environmental and Chemical EngineeringShanghai University of Electric PowerShanghaiPeople’s Republic of China

Personalised recommendations