Supersonic cluster beam fabrication of metal–ionogel nanocomposites for soft robotics

  • Tommaso SantanielloEmail author
  • Lorenzo Migliorini
  • Yunsong Yan
  • Cristina Lenardi
  • Paolo MilaniEmail author
Part of the following topical collections:
  1. 20th Anniversary Issue: From the editors


Soft robotics is an emerging field targeting at the development of robotic bodies and architectures characterized by flexibility, adaptability, and motility typical of that of biological systems. The use of electroactive ionic polymer–metal nanocomposites able to reversibly deform in response to low-intensity electric fields constitutes a promising solution for the implementation of actuators into soft robots. Currently, the use of this class of nanocomposites is hampered by several drawbacks, mainly related to the mismatch between the mechanical properties of the polymer and the metallic electrodes compromising their stability and resilience upon cyclic deformation.

Here, we report and discuss on the use of supersonic cluster beam implantation (SCBI) as an effective strategy for the fabrication of soft electroactive ionic polymeric nanocomposite actuators. SCBI relies on the use of supersonically accelerated beams of neutral metal nanoparticles that can be aerodynamically collimated and directed onto a polymeric target to generate thin nanostructured metal layers physically interpenetrating with the polymer.

Soft electroactive actuators based on engineered ionogel and ionogel-based hybrid nanocomposites provided with monolithically integrated cluster-assembled gold electrodes will be discussed. These systems can undergo long-term bending deformation in a low-voltage regime, due to the nanostructured electrode resilience. The use of cluster-assembled nanostructured electrodes opens new opportunities for the high-throughput manufacturing of soft ionic actuators with excellent mechanical resiliency, high-performance actuation, and high durability.


Polymer/metal nanocomposites Soft robotics Electroactive actuators Smart materials 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Ambrosetti G, Balberg I, Grimaldi C (2010) Percolation-to-hopping crossover in conductor-insulator composites. Phys Rev B Condens Matter Mater Phys 82.
  2. Argentiere S, Gigli G, Mortato M et al (2012) Smart microfluidics: the role of stimuli-responsive polymers in microfluidic devices, advances in microfluidics. Adv Microfluid. Google Scholar
  3. Asaka K (2012) Soft actuatorsCrossRefGoogle Scholar
  4. Bahramzadeh Y, Shahinpoor M (2013) A Review of Ionic Polymeric Soft Actuators and Sensors. Soft Robot 1:38–52. CrossRefGoogle Scholar
  5. Bar-Cohen Y (2000) Electroactive polymers as artificial muscles—capabilities, potentials, and challenges. Robot 2000:188–196. CrossRefGoogle Scholar
  6. Bar-Cohen Y (2002) Electroactive polymers as artificial muscles: a review. J Spacecr Rocket 39:822–827. CrossRefGoogle Scholar
  7. Bassil M, El Tahchi M, Souaid E et al (2008) Electrochemical and electromechanical properties of fully hydrolyzed polyacrylamide for applications in biomimetics. Smart Mater Struct 17. CrossRefGoogle Scholar
  8. Bauer S, Bauer-Gogonea S, Graz I, Kaltenbrunner M, Keplinger C, Schwödiauer R (2014) 25th Anniversary article: a soft future: from robots and sensor skin to energy harvesters. Adv Mater 26:149–162CrossRefGoogle Scholar
  9. Bennett MD, Leo DJ (2004) Ionic liquids as stable solvents for ionic polymer transducers. Sensors Actuators A Phys 115:79–90. CrossRefGoogle Scholar
  10. Bhandari B, Lee GY, Ahn SH (2012) A review on IPMC material as actuators and sensors: fabrications, characteristics and applications. Int J Precis Eng Manuf 13:141–163CrossRefGoogle Scholar
  11. Borghi F, Melis C, Ghisleri C, Podestà A, Ravagnan L, Colombo L, Milani P (2015) Stretchable nanocomposite electrodes with tunable mechanical properties by supersonic cluster beam implantation in elastomers. Appl Phys Lett 106:121902. CrossRefGoogle Scholar
  12. Brochu P, Pei Q (2010) Advances in dielectric elastomers for actuators and artificial muscles. Macromol Rapid Commun 31:10–36CrossRefGoogle Scholar
  13. Buchtová N, Guyomard-Lack A, Le Bideau J (2014) Biopolymer based nanocomposite ionogels: high performance, sustainable and solid electrolytes. Green Chem 16:1149–1152. CrossRefGoogle Scholar
  14. Calvert P (2009) Hydrogels for soft machines. Adv Mater 21:743–756. CrossRefGoogle Scholar
  15. Carpi F, Bauer S, De Rossi D (2010) Stretching dielectric elastomer performance. Science 330:1759–1761. CrossRefGoogle Scholar
  16. Carrico JD, Tyler T, Leang KK (2017) A comprehensive review of select smart polymeric and gel actuators for soft mechatronics and robotics applications: fundamentals, freeform fabrication, and motion control. Int J Smart Nano Mater 8:144–213. CrossRefGoogle Scholar
  17. Chiba S, Hasegawa K, Waki M et al (2017) Innovative elastomer transducer driven by Karman vortices in water flow. 7:121–135.
  18. Corbelli G, Ghisleri C, Marelli M, Milani P, Ravagnan L (2011) Highly deformable nanostructured elastomeric electrodes with improving conductivity upon cyclical stretching. Adv Mater 23:4504–4508. CrossRefGoogle Scholar
  19. Csoka L, Hoeger IC, Rojas OJ, Peszlen I, Pawlak JJ, Peralta PN (2012) Piezoelectric effect of cellulose nanocrystals thin films. ACS Macro Lett 1:867–870. CrossRefGoogle Scholar
  20. Dobrynin AV, Rubinstein M (2005) Theory of polyelectrolytes in solutions and at surfaces. Prog Polym Sci 30:1049–1118. CrossRefGoogle Scholar
  21. Doi M, Matsumoto M, Hirose Y (1992) Deformation of ionic polymer gels by electric fields. Macromolecules 25:5504–5511. CrossRefGoogle Scholar
  22. Duncan AJ, Leo DJ, Long TE (2008) Beyond Nafion: charged macromolecules tailored for performance as ionic polymer transducers. Macromolecules 41:7766–7775CrossRefGoogle Scholar
  23. Faupel F, Zaporojtchenko V, Strunskus T, Elbahri M (2010) Metal-polymer nanocomposites for functional applications. In: Advanced engineering materials. pp 1177–1190CrossRefGoogle Scholar
  24. Fukushima T, Asaka K, Kosaka A, Aida T (2005) Fully plastic actuator through layer-by-layer casting with ionic-liquid-based bucky gel. Angew Chemie - Int Ed 44:2410–2413. CrossRefGoogle Scholar
  25. Galluzzi M, Bovio S, Milani P, Podestà A (2018) Surface confinement induces the formation of solid-like insulating ionic liquid nanostructures. J Phys Chem C 122:7934–7944. CrossRefGoogle Scholar
  26. Gayet F, Viau L, Leroux F, Monge S, Robin JJ, Vioux A (2010) Polymer nanocomposite ionogels, high-performance electrolyte membranes. J Mater Chem 20:9456–9462. CrossRefGoogle Scholar
  27. Ghisleri C, Borghi F, Ravagnan L, Podestà A, Melis C, Colombo L, Milani P (2014) Patterning of gold–polydimethylsiloxane (Au–PDMS) nanocomposites by supersonic cluster beam implantation. J Phys D Appl Phys 47:015301. CrossRefGoogle Scholar
  28. Glazer PJ, van Erp M, Embrechts A, Lemay SG, Mendes E (2012) Role of pH gradients in the actuation of electro-responsive polyelectrolyte gels. Soft Matter 8:4421. CrossRefGoogle Scholar
  29. Gong JP, Nitta T, Osada Y (1994) Electrokinetic modeling of the contractile phenomena of polyelectrolyte gels. One-dimensional capillary model. J Phys Chem 98:9583–9587. CrossRefGoogle Scholar
  30. He Z, Alexandridis P (2015) Nanoparticles in ionic liquids: interactions and organization. Phys Chem Chem Phys 17:18238–18261. CrossRefGoogle Scholar
  31. Hines L, Petersen K, Lum GZ, Sitti M (2017) Soft actuators for small-scale robotics. Adv Mater 29CrossRefGoogle Scholar
  32. Horowitz AI, Panzer MJ (2014) Poly(dimethylsiloxane)-supported ionogels with a high ionic liquid loading. Angew Chem Int Ed 53:9780–9783. CrossRefGoogle Scholar
  33. Hunt A, Chen Z, Tan X, Kruusmaa M (2016) An integrated electroactive polymer sensor-actuator: design, model-based control, and performance characterization. Smart Mater Struct 25:035016. CrossRefGoogle Scholar
  34. Ilievski F, Mazzeo AD, Shepherd RF, Chen X, Whitesides GM (2011) Soft robotics for chemists. Angew Chem Int Ed 50:1890–1895. CrossRefGoogle Scholar
  35. Ionov L (2013) Biomimetic hydrogel-based actuating systems. Adv Funct Mater 23:4555–4570. CrossRefGoogle Scholar
  36. Ionov L (2014) Hydrogel-based actuators: possibilities and limitations. Mater Today 17:494–503CrossRefGoogle Scholar
  37. Ionov L (2015) Polymeric actuators. Langmuir 31:5015–5024. CrossRefGoogle Scholar
  38. Jabbari E, Tavakoli J, Sarvestani AS (2007) Swelling characteristics of acrylic acid polyelectrolyte hydrogel in a dc electric field. Smart Mater Struct 16:1614–1620. CrossRefGoogle Scholar
  39. Jo C, Pugal D, Oh IK, Kim KJ, Asaka K (2013) Recent advances in ionic polymer-metal composite actuators and their modeling and applications. Prog Polym Sci 38:1037–1066. CrossRefGoogle Scholar
  40. Kango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R (2013) Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites—a review. Prog Polym Sci 38:1232–1261. CrossRefGoogle Scholar
  41. Kataoka T, Ishioka Y, Mizuhata M, Minami H, Maruyama T (2015) Highly conductive ionic-liquid gels prepared with orthogonal double networks of a low-molecular-weight gelator and cross-linked polymer. ACS Appl Mater Interfaces 7:23346–23352. CrossRefGoogle Scholar
  42. Kim KJ, Shahinpoor M (2003) Ionic polymer metal composites: II. Manufacturing techniques. Smart Mater Struct 12:65–79. CrossRefGoogle Scholar
  43. Kim KJ, Tadokoro S (2007) Electroactive polymers for robotic applicationsGoogle Scholar
  44. Kim S, Laschi C, Trimmer B (2013) Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol 31:287–294CrossRefGoogle Scholar
  45. Kim J, Jeon JH, Kim HJ, Lim H, Oh IK (2014) Durable and water-floatable ionic polymer actuator with hydrophobic and asymmetrically laser-scribed reduced graphene oxide paper electrodes. ACS Nano 8:2986–2997. CrossRefGoogle Scholar
  46. Kim JH, Shim BS, Kim HS, Lee YJ, Min SK, Jang D, Abas Z, Kim J (2015) Review of nanocellulose for sustainable future materials. Int J Precis Eng Manuf Green Technol 2:197–213. CrossRefGoogle Scholar
  47. Kusoglu A, Weber AZ (2015) Electrochemical/mechanical coupling in ion-conducting soft matter. J Phys Chem Lett 6:4547–4552CrossRefGoogle Scholar
  48. Laschi C, Cianchetti M (2014) Soft robotics: new perspectives for robot bodyware and control. Front Bioeng Biotechnol 2.
  49. Le Bideau J, Viau L, Vioux A (2011) Ionogels, ionic liquid based hybrid materials. Chem Soc Rev 40:907–925. CrossRefGoogle Scholar
  50. Lee JW, Yoo YT, Lee JY (2014) Ionic polymer-metal composite actuators based on triple-layered polyelectrolytes composed of individually functionalized layers. ACS Appl Mater Interfaces 6:1266–1271. CrossRefGoogle Scholar
  51. Lipson H (2014) Challenges and opportunities for design, simulation, and fabrication of soft robots. Soft Robot 1:21–27. CrossRefGoogle Scholar
  52. Liu YD, Choi HJ (2013) Recent progress in smart polymer composite particles in electric and magnetic fields. Polym Int 62:147–151CrossRefGoogle Scholar
  53. Liu X, He B, Wang Z, Tang H, Su T, Wang Q (2014) Tough nanocomposite ionogel-based actuator exhibits robust performance. Sci Rep 4.
  54. López-Barrón CR, Beltramo PJ, Liu Y, Choi SM, Lee MJ (2016) Mechanical, dielectric and structural characterization of cross-linked PEG-diacrylate/ethylammonium nitrate ionogels. Polymer (United Kingdom) 87:300–307. CrossRefGoogle Scholar
  55. Lovestead TM, Brien AKO, Bowman CN (2003) Models of multivinyl free radical photopolymerization kinetics. 159:135–143. CrossRefGoogle Scholar
  56. Lu N, Kim D-H (2014) Flexible and stretchable electronics paving the way for soft robotics. Soft Robot 1:53–62. CrossRefGoogle Scholar
  57. Manouras T, Vamvakaki M (2016) Field responsive materials: photo-, electro-, magnetic- and ultrasound-sensitive polymers. Polym Chem 8:74–96. CrossRefGoogle Scholar
  58. Marelli M, Divitini G, Collini C, Ravagnan L, Corbelli G, Ghisleri C, Gianfelice A, Lenardi C, Milani P, Lorenzelli L (2011) Flexible and biocompatible microelectrode arrays fabricated by supersonic cluster beam deposition on SU-8. J Micromech Microeng 21:045013. CrossRefGoogle Scholar
  59. Marr PC, Marr AC (2015) Ionic liquid gel materials: applications in green and sustainable chemistry. Green Chem 18:105–128. CrossRefGoogle Scholar
  60. Messner PWC, Paik J, Shepherd R et al (2014) Energy for biomimetic robots: challenges and solutions. Soft Robot 1:106–109. CrossRefGoogle Scholar
  61. Migliorini L, Santaniello T, Yan Y, Lenardi C, Milani P (2016) Low-voltage electrically driven homeostatic hydrogel-based actuators for underwater soft robotics. Sensors Actuators B Chem 228:758–766. CrossRefGoogle Scholar
  62. Mirfakhrai T, Madden JDW, Baughman RH (2007) Polymer artificial muscles. Mater Today 10:30–38. CrossRefGoogle Scholar
  63. Mirvakili SM, Hunter IW (2017) Artificial muscles: mechanisms, applications, and challenges. Adv Mater 1704407. CrossRefGoogle Scholar
  64. Moganty SS, Srivastava S, Lu Y, Schaefer JL, Rizvi SA, Archer LA (2012) Ionic liquid-tethered nanoparticle suspensions: a novel class of ionogels. Chem Mater 24:1386–1392. CrossRefGoogle Scholar
  65. Morales D, Palleau E, Dickey MD, Velev OD (2014) Electro-actuated hydrogel walkers with dual responsive legs. Soft Matter 10:1337–1348. CrossRefGoogle Scholar
  66. Nemat-Nasser S (2002) Micromechanics of actuation of ionic polymer-metal composites. J Appl Phys 92:2899–2915. CrossRefGoogle Scholar
  67. O’Halloran A, O’Malley F, McHugh P (2008) A review on dielectric elastomer actuators, technology, applications, and challenges. J Appl Phys 104:071101. CrossRefGoogle Scholar
  68. Okazaki H, Sawada S, Kimura M, Tanaka H, Matsumoto T, Ohtake T, Inoue S (2012) Soft actuator using ionic polymer-metal composite composed of gold electrodes deposited using vacuum evaporation. IEEE Electron Device Lett 33. CrossRefGoogle Scholar
  69. Park K, Yoon MK, Lee S, Choi J, Thubrikar M (2010) Effects of electrode degradation and solvent evaporation on the performance of ionic-polymer-metal composite sensors. Smart Mater Struct 19:075002. CrossRefGoogle Scholar
  70. Pelrine R, Kornbluh R, Pei Q, Joseph J (2000) High-speed electrically actuated elastomers with strain greater than 100%. Science 287:836–839. CrossRefGoogle Scholar
  71. Piseri P, Tafreshi HV, Milani P (2004) Manipulation of nanoparticles in supersonic beams for the production of nanostructured materials. Curr Opin Solid State Mater Sci 8:195–202CrossRefGoogle Scholar
  72. Pugal D, Jung K, Aabloo A, Kim KJ (2010) Ionic polymer-metal composite mechanoelectrical transduction: review and perspectives. Polym Int 59:279–289CrossRefGoogle Scholar
  73. Qin H, Panzer MJ (2017) Chemically cross-linked poly(2-hydroxyethyl methacrylate)-supported deep eutectic solvent gel electrolytes for eco-friendly supercapacitors. ChemElectroChem 4:2556–2562. CrossRefGoogle Scholar
  74. Rahman M, Brazel CS (2006) Ionic liquids: new generation stable plasticizers for poly(vinyl chloride). Polym Degrad Stab 91:3371–3382. CrossRefGoogle Scholar
  75. Ravagnan L, Divitini G, Rebasti S et al (2009) Poly(methyl methacrylate)–palladium clusters nanocomposite formation by supersonic cluster beam deposition: a method for microstructured metallization of polymer surfaces. 82002. CrossRefGoogle Scholar
  76. Rich SI, Wood RJ, Majidi C (2018) Untethered soft robotics. Nat Electron 1:102–112. CrossRefGoogle Scholar
  77. Rogers JA (2013) A clear advance in soft actuators. Science 341:968–969CrossRefGoogle Scholar
  78. Rogers JA, Someya T, Huang Y (2010) Materials and mechanics for stretchable electronics. Science 327:1603–1607CrossRefGoogle Scholar
  79. Rus D, Tolley MT (2015) Design, fabrication and control of soft robots. Nature 521:467–475CrossRefGoogle Scholar
  80. Saito S, Katoh Y, Kokubo H, Watanabe M, Maruo S (2009) Development of a soft actuator using a photocurable ionic gel. J Micromech Microeng 19. CrossRefGoogle Scholar
  81. Santaniello T, Migliorini L, Locatelli E, Monaco I, Yan Y, Lenardi C, Comes Franchini M, Milani P (2017) Hybrid nanocomposites based on electroactive hydrogels and cellulose nanocrystals for high-sensitivity electro-mechanical underwater actuation. Smart Mater Struct 26:85030. CrossRefGoogle Scholar
  82. Santaniello T, Migliorini L, Borghi F, Yan Y, Rondinini S, Lenardi C, Milani P (2018) Spring-like electroactive actuators based on paper/ionogel/metal nanocomposites. Smart Mater Struct 27:065004. CrossRefGoogle Scholar
  83. Schexnailder P, Schmidt G (2009) Nanocomposite polymer hydrogels. Colloid Polym Sci 287:1–11. CrossRefGoogle Scholar
  84. Shahinpoor M, Kim KJ (2000) Effect of surface-electrode resistance on the performance of ionic polymer-metal composite (IPMC) artificial muscles. Smart Mater Struct 9:543–551. CrossRefGoogle Scholar
  85. Shahinpoor M, Kim KJ (2001) Ionic polymer-metal composites: I. Fundamentals. Smart Mater Struct 10:819–833. CrossRefGoogle Scholar
  86. Shi Y, Zhang J, Pan L, Shi Y, Yu G (2016) Energy gels: a bio-inspired material platform for advanced energy applications. Nano Today 11:738–762. CrossRefGoogle Scholar
  87. Shiga T (1997) Deformation and viscoelastic behavior of polymer gels in electric fields. Adv Polym Sci 134:131–163. CrossRefGoogle Scholar
  88. Shiga T, Hirose Y, Okada A, Kurauchi T (1994) Deformation of ionic polymer gel films in electric fields. J Mater Sci 29:5715–5718. CrossRefGoogle Scholar
  89. Shin MK, Spinks GM, Shin SR, Kim SI, Kim SJ (2009) Nanocomposite hydrogel with high toughness for bioactuators. Adv Mater 21:1712–1715. CrossRefGoogle Scholar
  90. Taccola S, Bellacicca A, Milani P, Beccai L, Greco F (2018) Low-voltage dielectric elastomer actuators with stretchable electrodes fabricated by supersonic cluster beam implantation. J Appl Phys 124:064901. CrossRefGoogle Scholar
  91. Takele H, Jebril S, Strunskus T, Zaporojchenko V, Adelung R, Faupel F (2008) Tuning of electrical and structural properties of metal-polymer nanocomposite films prepared by co-evaporation technique. Appl Phys A Mater Sci Process 92:345–350. CrossRefGoogle Scholar
  92. Tanaka T, Nishio I, Sun S-T, Ueno-Nishio S (1982) Collapse of gels in an electric field. Science 218:467–469. CrossRefGoogle Scholar
  93. Thiemann S, Sachnov SJ, Pettersson F, Bollström R, Österbacka R, Wasserscheid P, Zaumseil J (2014) Cellulose-based ionogels for paper electronics. Adv Funct Mater 24:625–634. CrossRefGoogle Scholar
  94. Tiwari R, Garcia E (2011) The state of understanding of ionic polymer metal composite architecture: a review. Smart Mater Struct 20:083001. CrossRefGoogle Scholar
  95. Totaro M, Mondini A, Bellacicca A et al (2017) Integrated simultaneous detection of tactile and bending cues for soft robotics. Soft Robot. CrossRefGoogle Scholar
  96. Trimmer B (2013) Soft robots. Curr Biol 23:R639–R641CrossRefGoogle Scholar
  97. Trivedi D, Rahn CD, Kier WM, Walker ID (2008) Soft robotics: biological inspiration, state of the art, and future research. Appl Bionics Biomech 5:99–117. CrossRefGoogle Scholar
  98. Wang J, Xu C, Taya M, Kuga Y (2007) A flemion-based actuator with ionic liquid as solvent. Smart Mater Struct 16:S214–S219. CrossRefGoogle Scholar
  99. Wang X, Dong L, Zhang H et al (2015) Recent progress in electronic skin. Adv Sci 2Google Scholar
  100. Wegner K, Piseri P, Tafreshi HV, Milani P (2006) Cluster beam deposition: a tool for nanoscale science and technology. J Phys D Appl Phys 39:R439–R459CrossRefGoogle Scholar
  101. Wehner M, Truby RL, Fitzgerald DJ, Mosadegh B, Whitesides GM, Lewis JA, Wood RJ (2016) An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536:451–455. CrossRefGoogle Scholar
  102. Winterton N (2006) Solubilization of polymers by ionic liquids. J Mater Chem 16:4281. CrossRefGoogle Scholar
  103. Xu S, Zhang Y, Cho J, Lee J, Huang X, Jia L, Fan JA, Su Y, Su J, Zhang H, Cheng H, Lu B, Yu C, Chuang C, Kim TI, Song T, Shigeta K, Kang S, Dagdeviren C, Petrov I, Braun PV, Huang Y, Paik U, Rogers JA (2013) Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat Commun 4.
  104. Yan Y, Santaniello T, Bettini LG, Minnai C, Bellacicca A, Porotti R, Denti I, Faraone G, Merlini M, Lenardi C, Milani P (2017) Electroactive ionic soft actuators with monolithically integrated gold nanocomposite electrodes. Adv Mater 29(1606109):1–9. CrossRefGoogle Scholar
  105. Yang S, Wang X, Ding B, Yu J, Qian J, Sun G (2011) Controllable fabrication of soap-bubble-like structured polyacrylic acid nano-nets via electro-netting. Nanoscale 3:564–568. CrossRefGoogle Scholar
  106. Yang G-Z, Bellingham J, Dupont PE, Fischer P, Floridi L, Full R, Jacobstein N, Kumar V, McNutt M, Merrifield R, Nelson BJ, Scassellati B, Taddeo M, Taylor R, Veloso M, Wang ZL, Wood R (2018) The grand challenges of science robotics. Sci Robot 3:eaar7650. CrossRefGoogle Scholar
  107. Zhao N, Liu Y, Zhao X, Song H (2016) Liquid crystal self-assembly of halloysite nanotubes in ionic liquids: a novel soft nanocomposite ionogel electrolyte with high anisotropic ionic conductivity and thermal stability. Nanoscale 8:1545–1554. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.CIMaINa, Dipartimento di FisicaUniversità degli Studi di MilanoMilanItaly

Personalised recommendations