Effect of passivating Al2O3 thin films on MnO2/carbon nanotube composite lithium-ion battery anodes

  • Yafei Fan
  • Guylhaine Clavel
  • Nicola PinnaEmail author
Research Paper


MnO2/carbon nanotube composite electrodes for Li-ion battery application were directly coated with ultrathin thicknesses of aluminum oxide film by atomic layer deposition (ALD). The non-reactive Al2O3 layer not only provides a stable film to protect the manganese oxide and carbon nanotubes from undesirable reaction with the electrolyte but also restrains the volume change strain of manganese oxide during cycling. The first cycle Coulombic efficiency of coated samples was increased to different extents depending on the coating thickness. In the following cycles, the coated electrodes denote high specific capacity, good capacity retention ability, and perfect rate charge/discharge performance.


Atomic layer deposition MnO2 Lithium-ion battery Energy storage 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11051_2018_4315_MOESM1_ESM.docx (403 kb)
ESM 1 (DOCX 403 kb)


  1. Abraham DP, Spila T, Furczon MM, Sammann E (2008) Evidence of transition-metal accumulation on aged graphite anodes by SIMS. Electrochem Solid-State Lett 11:A226–A228. CrossRefGoogle Scholar
  2. Ahn D, Xiao X (2011) Extended lithium titanate cycling potential window with near zero capacity loss. Electrochem Commun 13:796–799. CrossRefGoogle Scholar
  3. Brousse T, Defives D, Pasquereau L, Lee SM, Herterich U, Schleich DM (1997) Metal oxide anodes for Li-ion batteries. Ionics 3:332–337. CrossRefGoogle Scholar
  4. Cen Y, Yao Y, Xu Q, Xia Z, Sisson RD, Liang J (2016) Fabrication of TiO2-graphene composite for the enhanced performance of lithium batteries. RSC Adv 6:66971–66977. CrossRefGoogle Scholar
  5. Chen H, Zhang Q, Wang J, Xu D, Li X, Yang Y, Zhang K (2014a) Improved lithium ion battery performance by mesoporous Co3O4 nanosheets grown on self-standing NiSix nanowires on nickel foam. J Mater Chem A 2:8483–8490. CrossRefGoogle Scholar
  6. Chen J, Wang Y, He X, Xu S, Fang M, Zhao X, Shang Y (2014b) Electrochemical properties of MnO2 nanorods as anode materials for lithium ion batteries. Electrochim Acta 142:152–156. CrossRefGoogle Scholar
  7. Dubarry M, Liaw BY (2009) Identify capacity fading mechanism in a commercial LiFePO4 cell. J Power Sources 194:541–549. CrossRefGoogle Scholar
  8. Dubarry M, Liaw BY, Chen M-S, Chyan S-S, Han K-C, Sie W-T, Wu S-H (2011) Identifying battery aging mechanisms in large format Li ion cells. J Power Sources 196:3420–3425. CrossRefGoogle Scholar
  9. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:3243–3262. CrossRefGoogle Scholar
  10. Fang X, Lu X, Guo X, Mao Y, Hu YS, Wang J, Wang Z, Wu F, Liu H, Chen L (2010) Electrode reactions of manganese oxides for secondary lithium batteries. Electrochem Commun 12:1520–1523. CrossRefGoogle Scholar
  11. Feng X, Zhang Y, Song J, Chen N, Zhou J, Huang Z, Ma Y, Zhang L, Wang L (2015) MnO2/graphene nanocomposites for nonenzymatic electrochemical detection of hydrogen peroxide. Electroanalysis 27:353–359. CrossRefGoogle Scholar
  12. George SM (2010) Atomic layer deposition: an overview. Chem Rev 110:111–131. CrossRefGoogle Scholar
  13. Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603. CrossRefGoogle Scholar
  14. Gowda SR, Gallagher KG, Croy JR, Bettge M, Thackeray MM, Balasubramanian M (2014) Oxidation state of cross-over manganese species on the graphite electrode of lithium-ion cells. Phys Chem Chem Phys 16:6898–6902. CrossRefGoogle Scholar
  15. Guo J, Liu Q, Wang C, Zachariah MR (2012) Interdispersed amorphous MnOx–carbon nanocomposites with superior electrochemical performance as lithium-storage material. Adv Funct Mater 22:803–811. CrossRefGoogle Scholar
  16. Guo X, Han J, Zhang L, Liu P, Hirata A, Chen L, Fujita T, Chen M (2015) A nanoporous metal recuperated MnO2 anode for lithium ion batteries. Nanoscale 7:15111–15116. CrossRefGoogle Scholar
  17. He Y, Yu X, Wang Y, Li H, Huang X (2011) Alumina-coated patterned amorphous silicon as the anode for a lithium-ion battery with high coulombic efficiency. Adv Mater 23:4938–4941. CrossRefGoogle Scholar
  18. Huang Y, Lin Z, Zheng M, Wang T, Yang J, Yuan F, Lu X, Liu L, Sun D (2016) Amorphous Fe2O3 nanoshells coated on carbonized bacterial cellulose nanofibers as a flexible anode for high-performance lithium ion batteries. J Power Sources 307:649–656. CrossRefGoogle Scholar
  19. Jung YS, Cavanagh AS, Riley LA, Kang SH, Dillon AC, Groner MD, George SM, Lee SH (2010) Ultrathin direct atomic layer deposition on composite electrodes for highly durable and safe Li-ion batteries. Adv Mater 22:2172–2176. CrossRefGoogle Scholar
  20. Kuksenko SP (2013) Aluminum foil as anode material of lithium-ion batteries: effect of electrolyte compositions on cycling parameters. Russ J Electrochem 49:67–75. CrossRefGoogle Scholar
  21. Kurttepeli M et al (2017) Heterogeneous TiO2/V2O5/carbon nanotube electrodes for lithium-ion batteries. ACS Appl Mater Interfaces:8055–8064.
  22. Lahiri I, Oh SM, Hwang JY, Kang C, Choi M, Jeon H, Banerjee R, Sun YK, Choi W (2011) Ultrathin alumina-coated carbon nanotubes as an anode for high capacity Li-ion batteries. J Mater Chem 21:13621–13626. CrossRefGoogle Scholar
  23. Li H, Balaya P, Maier J (2004) Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides. J Electrochem Soc 151:A1878–A1885. CrossRefGoogle Scholar
  24. Li J, Xiao H, Lin X, Zhao Y (2011) An efficient closed-form solution of synchronization and channel estimation in UWB. In: 2011 Seventh International Conference on Computational Intelligence and Security. pp 698–702.
  25. Li L, Raji A-RO, Tour JM (2013) Graphene-wrapped MnO2–graphene nanoribbons as anode materials for high-performance lithium ion batteries. Adv Mater 25:6298–6302. CrossRefGoogle Scholar
  26. Li L, Hu ZA, An N, Yang YY, Li ZM, Wu HY (2014) Facile synthesis of MnO2/CNTs composite for supercapacitor electrodes with long cycle stability. J Phys Chem C 118:22865–22872. CrossRefGoogle Scholar
  27. Liu X, Sun Q, Ng AMC, Djurišić AB, Xie M, Dai B, Tang J, Surya C, Liao C, Shih K (2015) An alumina stabilized graphene oxide wrapped SnO2 hollow sphere LIB anode with improved lithium storage. RSC Adv 5:100783–100789. CrossRefGoogle Scholar
  28. Luo S, Xu S, Zhang Y, Liu J, Wang S, He P (2016) Preparation of MnO2 and MnO2/carbon nanotubes nanocomposites with improved electrochemical performance for lithium ion batteries. J Solid State Electrochem 20:2045–2053. CrossRefGoogle Scholar
  29. Marichy C, Tessonnier J-P, Ferro MC, Lee K-H, Schlogl R, Pinna N, Willinger M-G (2012) Labeling and monitoring the distribution of anchoring sites on functionalized CNTs by atomic layer deposition. J Mater Chem 22:7323–7330. CrossRefGoogle Scholar
  30. Moffatt WG, Research GEC, Operation DCTM (1981) The handbook of binary phase diagrams. vol 4. General Electric Company, Corporate Research and Development, Technology Marketing Operation,Google Scholar
  31. Oh Y, Ahn D, Nam S, Park B (2010) The effect of Al2O3-coating coverage on the electrochemical properties in LiCoO2 thin films. J Solid State Electrochem 14:1235–1240. CrossRefGoogle Scholar
  32. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499. CrossRefGoogle Scholar
  33. Puurunen RL (2005) Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process. J Appl Phys 97:121301. CrossRefGoogle Scholar
  34. Riley LA, Cavanagh AS, George SM, Lee S-H, Dillon AC (2011) Improved mechanical integrity of ALD-coated composite electrodes for Li-ion batteries. Electrochem Solid-State Lett 14:A29–A31. CrossRefGoogle Scholar
  35. Smith AJ, Dahn JR (2012) Delta differential capacity analysis. J Electrochem Soc 159:A290–A293. CrossRefGoogle Scholar
  36. Sun B, Chen Z, Kim H-S, Ahn H, Wang G (2011) MnO/C core–shell nanorods as high capacity anode materials for lithium-ion batteries. J Power Sources 196:3346–3349. CrossRefGoogle Scholar
  37. Sun S, Zhao X, Yang M, Wu L, Wen Z, Shen X (2016) Hierarchically ordered mesoporous Co3O4 materials for high performance Li-ion batteries. Sci Rep 6:19564. CrossRefGoogle Scholar
  38. Thackeray MM, Wolverton C, Isaacs ED (2012) Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ Sci 5:7854–7863. CrossRefGoogle Scholar
  39. Wohlfahrt-Mehrens M, Vogler C, Garche J (2004) Aging mechanisms of lithium cathode materials. J Power Sources 127:58–64. CrossRefGoogle Scholar
  40. Wu M-S, Chiang P-CJ, Lee J-T, Lin J-C (2005) Synthesis of manganese oxide electrodes with interconnected nanowire structure as an anode material for rechargeable lithium ion batteries. J Phys Chem B 109:23279–23284. CrossRefGoogle Scholar
  41. Xia H, Lai M, Lu L (2010) Nanoflaky MnO2/carbon nanotube nanocomposites as anode materials for lithium-ion batteries. J Mater Chem 20:6896–6902. CrossRefGoogle Scholar
  42. Xia H, Wang Y, Lin J, Lu L (2012) Hydrothermal synthesis of MnO2/CNT nanocomposite with a CNT Core/porous MnO2 sheath hierarchy architecture for supercapacitors. Nanoscale Res Lett 7:33. CrossRefGoogle Scholar
  43. Xiao X, Lu P, Ahn D (2011) Ultrathin multifunctional oxide coatings for lithium ion batteries. Adv Mater 23:3911–3915. CrossRefGoogle Scholar
  44. Xu S, Hessel CM, Ren H, Yu R, Jin Q, Yang M, Zhao H, Wang D (2014) α-Fe2O3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention. Energy Environ Sci 7:632–637. CrossRefGoogle Scholar
  45. Yan J, Fan Z, Wei T, Cheng J, Shao B, Wang K, Song L, Zhang M (2009) Carbon nanotube/MnO2 composites synthesized by microwave-assisted method for supercapacitors with high power and energy densities. J Power Sources 194:1202–1207. CrossRefGoogle Scholar
  46. Zheng H, Sun Q, Liu G, Song X, Battaglia VS (2012) Correlation between dissolution behavior and electrochemical cycling performance for LiNi1/3Co1/3Mn1/3O2-based cells. J Power Sources 207:134–140. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Institut für Chemie and IRIS AdlershofHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations