A facile synthesis of heteroatom-doped carbon framework anchored with TiO2 nanoparticles for high performance lithium ion battery anodes

  • Bo Long
  • Song Chen
  • Biao Wang
  • Jingjing Tang
  • Juan Yang
  • Xiangyang ZhouEmail author
Research Paper


Titanium dioxide (TiO2)-based materials have been well studied because of the high safety and excellent cycling performance when employed as anode materials for lithium ion batteries (LIBs), whereas, the relatively low theoretical capacity (only 335 mAh g−1) and serious kinetic problems such as poor electrical conductivity (~ 10−13S cm−1) and low lithium diffusion coefficient (~ 10−9 to 10−13 cm2 s−1) hinder the development of the TiO2-based anode materials. To overcome these drawbacks, we present a facile strategy to synthesize N/S dual-doping carbon framework anchored with TiO2 nanoparticles (NSC@TiO2) as LIBs anode. Typically, TiO2 nanoparticles are anchored into the porous graphene-based sheets with N, S dual doping feature, which is produced by carbonization and KOH activation process. The as-obtained NSC@TiO2 electrode exhibits a high specific capacity of 250 mAh g−1 with a coulombic efficiency of 99% after 500 cycles at 200 mA g−1 and excellent rate performance, indicating its promising as anode material for LIBs.


Lithium ion batteries N/S dual-doping Nanoparticles Anode materials Energy storage 


Funding information

This study was funded by the National Nature Science Foundation of China (Grant no. 51204209).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Aricò AS, Bruce P, Scrosati B, Tarascon JM, Van SW (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4(5):366–377CrossRefGoogle Scholar
  2. Armand M, Tarascon JM (2008) Building better batteries. Nature 451(7179):652–657CrossRefGoogle Scholar
  3. Beaulieu LY, Larcher D, Dunlap RA, Dahn JR (2000) Reaction of li with grain-boundary atoms in nanostructured compounds. J Electrochem Soc 147(9):3206CrossRefGoogle Scholar
  4. Belharouak I, Sun YK, Lu W, Amine K (2007) On the safety of the li4ti5o12∕limn2o4 lithium-ion battery system. J Electrochem Soc 154(12):A1083–A1087CrossRefGoogle Scholar
  5. Chen Z, Belharouak I, Sun YK, Amine K (2013) Titanium-based anode materials for safe lithium-ion batteries. Adv Funct Mater 23(8):959–969CrossRefGoogle Scholar
  6. Chu S, Zhong Y, Cai R, Zhang Z, Wei S, Shao Z (2016) Mesoporous and nanostructured TiO2 layer with ultra-high loading on nitrogen-doped carbon foams as flexible and free standing electrodes for lithium-ion batteries. Small 12(48):6724–6734CrossRefGoogle Scholar
  7. Dong Y, Pang H, Yang HB, Guo C, Shao J, Chi Y, Li CM, Yu T (2013) Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew Chem 125(30):7954–7958CrossRefGoogle Scholar
  8. Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339CrossRefGoogle Scholar
  9. Jannik J, Maier J (2004) Nanocrystallinity effects in lithium battery materials. Aspects of nano-ionics. Part 4. Cheminform 35(4):5215–5220CrossRefGoogle Scholar
  10. Jung HG, Jang MW, Hassoun J, Sun YK, Scrosati B (2011) A high-rate long-life li4ti5o12/li[ni0.45co0.1mn1.45]o4 lithium-ion battery. Nat Commun 2(7):516CrossRefGoogle Scholar
  11. Kamata M, Fujine S, Yoneda K, Kanda K, Esaka T (1999) Diffusion coefficient measurement of lithium ion in sintered li1.33ti1.67o4 by means of neutron radiography. Solid State Ionics 123(1):165Google Scholar
  12. Larcher D, Tarascon JM (2015) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7(1):19–29CrossRefGoogle Scholar
  13. Liang J, Jiao Y, Jaroniec M, Qiao SZ (2012) Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew Chem Int Ed Engl 51(46):11496CrossRefGoogle Scholar
  14. Liu Z, Nie H, Yang Z, Zhang J, Jin Z, Lu Y, Xiao Z, Huang S (2013) Sulfur-nitrogen co-doped three-dimensional carbon foams with hierarchical pore structures as efficient metal-free electrocatalysts for oxygen reduction reactions. Nanoscale 5(8):3283–3288CrossRefGoogle Scholar
  15. Ma X, Ning G, Sun Y, Pu Y, Gao J (2014) High capacity li storage in sulfur and nitrogen dual-doped graphene networks. Carbon 79(6):310–320CrossRefGoogle Scholar
  16. Mi JEC, Nam KM, Lee Y, Song K, Park JT, Kang YM (2011) Phosphidation of li ti o nanoparticles and their electrochemical and biocompatible superiority for lithium rechargeable batteries. Chem Commun 47(41):11474–11476CrossRefGoogle Scholar
  17. Qiu B, Xing M, Zhang J (2014) Mesoporous tio2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries. J Am Chem Soc 136(16):5852–5855CrossRefGoogle Scholar
  18. Ren H, Yu R, Wang J, Jin Q, Yang M, Mao D, Kisailus D, Zhao H, Wang D (2014) Multishelled tio2 hollow microspheres as anodes with superior reversible capacity for lithium ion batteries. Nano Lett 14(11):6679–6684CrossRefGoogle Scholar
  19. Shen L, Yuan C, Luo H, Zhang X, Chen L, Li H (2011) Novel template-free solvothermal synthesis of mesoporous li4ti5o12-c microspheres for high power lithium ion batteries. J Mater Chem 21(38):14414–14416CrossRefGoogle Scholar
  20. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367CrossRefGoogle Scholar
  21. Wagemaker M, van Eck ERH, Kentgens APM, Mulder FM (2009) Li-ion diffusion in the equilibrium nanomorphology of spinel Li4+xTi5O12. J Phys Chem B 113:224–230CrossRefGoogle Scholar
  22. Wang Z, Lou XW (2012) Tio(2) nanocages: fast synthesis, interior functionalization and improved lithium storage properties. Adv Mater 24(30):4124–4129CrossRefGoogle Scholar
  23. Wang X, Sun G, Routh P, Kim DH, Huang W, Chen P (2014a) Heteroatom-doped graphene materials: syntheses, properties and applications. Chem Soc Rev 43(20):7067–7098CrossRefGoogle Scholar
  24. Wang X, Weng Q, Liu X, Wang X, Tang DM, Tian W, Zhang C, Yi W, Liu D, Bando Y, Golberg D (2014b) Atomistic origins of high rate capability and capacity of n-doped graphene for lithium storage. Nano Lett 14(3):1164–1171CrossRefGoogle Scholar
  25. Wang H, Ma C, Yang X, Han T, Tao Z, Song Y, Liu Z, Guo Q, Liu L (2015a) Fabrication of boron-doped carbon fibers by the decomposition of b 4 c and its excellent rate performance as an anode material for lithium-ion batteries. Solid State Sci 41:36–42CrossRefGoogle Scholar
  26. Wang C, Wu L, Wang H, Zuo W, Li Y, Liu J (2015b) Fabrication and shell optimization of synergistic tio2-moo3 core–shell nanowire array anode for high energy and power density lithium-ion batteries. Adv Funct Mater 25(23):3524–3533CrossRefGoogle Scholar
  27. Wu L, Yang J, Zhou X, Tang J, Ren Y, Yang N (2016) Enhanced electrochemical performance of heterogeneous si/mosi2 anodes prepared by a magnesiothermic reduction. ACS Appl Mater Interfaces 8(26):16862CrossRefGoogle Scholar
  28. Xing LB, Hou SF, Zhang JL, Zhou J, Li Z, Si W, Zhuo S (2015) A facile preparation of three dimensional n, s co-doped graphene hydrogels with thiocarbohydrazide for electrode materials in supercapacitor. Mater Lett 147:97–100CrossRefGoogle Scholar
  29. Yang J, Xi L, Tang J, Chen F, Wu L, Zhou X (2016) There-dimensional porous carbon network encapsulated sno 2, quantum dots as anode materials for high-rate lithium ion batteries. Electrochim Acta 217:274–282CrossRefGoogle Scholar
  30. Yu Z, Song J, Gordin ML, Yi R, Tang D, Wang D (2015) Phosphorus‐graphene nanosheet hybrids as lithium‐ion anode with exceptional high‐temperature cycling stability. Adv Sci 2(1–2).
  31. Yun YS, Le VD, Kim H, Chang SJ, Baek SJ, Park S et al (2014) Effects of sulfur doping on graphene-based nanosheets for use as anode materials in lithium-ion batteries. J Power Sources 262(4):79–85CrossRefGoogle Scholar
  32. Zhao L, Hu YS, Li H, Wang Z, Chen L (2011) Porous li4 ti5 o12 coated with n-doped carbon from ionic liquids for li-ion batteries. Adv Mater 23(11):1385–1388CrossRefGoogle Scholar
  33. Zhou G, Paek E, Hwang GS, Manthiram A (2015) Long-life li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nat Commun 6:7760CrossRefGoogle Scholar
  34. Zhou X, Xi L, Chen F, Bai T, Wang B, Yang J (2016) In situ growth of sno 2, nanoparticles in heteroatoms doped cross-linked carbon frameworks for lithium ion batteries anodes. Electrochim Acta 213:633–640CrossRefGoogle Scholar
  35. Zhuang GL, Bai J, Tao X, Luo JM, Wang X, Gao Y, Zhong X, Li XN, Wang JG (2015) Synergistic effect of s,n-co-doped mesoporous carbon materials with high performance for oxygen-reduction reaction and li-ion batteries. J Mater Chem A 3(40):20244–20253CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Bo Long
    • 1
  • Song Chen
    • 1
  • Biao Wang
    • 1
  • Jingjing Tang
    • 1
  • Juan Yang
    • 1
  • Xiangyang Zhou
    • 1
    Email author
  1. 1.School of Metallurgy and EnvironmentCentral South UniversityChangshaChina

Personalised recommendations