Advertisement

The synergistic effect of phase heterojunction and surface heterojunction to improve photocatalytic activity of VO–TiO2: the co-catalytic effect of H3PW12O40

  • Haiyan Li
  • Shengnan Cai
  • Pengfei Yang
  • Yan Bai
  • Dongbin Dang
Research Paper
  • 82 Downloads

Abstract

With nanotube titanic acid (abbreviated as NTA) and the 12-tungstophosphoric acid (H3PW12O40xH2O, denoted as HPW) as start materials, respectively, according to a simple hydrothermal process in acid medium, we successfully prepared HPW modified VO–TiO2 composite photocatalysts. During heat treatment companied by the transformation of NTA to TiO2, a kind of single-electron-trapped oxygen vacancy (VO) could be formed contributing to the visible light absorption of catalysts. The morphology, phase and chemical structure, optical and electronic properties, and so on of the produced catalysts with various HPW loadings are characterized. The size range of synthesized photocatalyst nanoparticles are about 10~50 nm. Taking aqueous rhodamine B (RhB) dye as model pollutant, we carried out photocatalytic activity test of the achieved catalysts, revealing that the hybrid photocatalysts display significantly enhanced visible light-driven (λ ≥ 420 nm) photocatalytic activity for degradation of RhB. Among various catalysts, HPWN-0.1-120 composite with nominal loading of 0.1 g HPW and heat treatment temperature of 120 °C possesses the highest photocatalytic performance in visible light, which is closely related to the co-effect of phase heterojunction of rutile/anatase, surface heterojunction of anatase/HPW, and oxygen vacancy (VO). The two types of heterojunction promote greatly the separation efficiency of photoelectrons and photoholes and oxygen vacancy lures response of catalysts to visible light.

Keywords

Tungstophosphoric acid Oxygen vacancy Heterojunction Photocatalytic pollutant elimination Titanium dioxide Nanostructured catalysts 

Notes

Funding

This work has been supported by the National Natural Science Foundation of China (21471045, 21571049), the Natural Science Foundation of Henan Province of China (162300410027, 162300410013), the Foundation of the Education Department of Henan Province of China (13A150045), Open Research Funds of Henan Key Laboratory of Polyoxometalate Chemistry (HNPOMKF1607, HNPOMKF1701), and the Scientific Fund of Henan Province Postdoctor (in 2016, First Aid).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293(5528):269–271.  https://doi.org/10.1126/science.1061051 CrossRefGoogle Scholar
  2. Chen W, Liu TY, Huang T, Liu XH, Duan GR, Yang XJ, Chen SM (2015) Novel yet simple strategy to fabricate visible light responsive C,N-TiO2/g-C3N4 heterostructures with significantly enhanced photocatalytic hydrogen generation. RSC Adv 5(122):101214–101220.  https://doi.org/10.1039/C5RA18302B CrossRefGoogle Scholar
  3. Chen Y, Li WZ, Wang JY, Gan YL, Liu L, Ju MT (2016) Microwave-assisted ionic liquid synthesis of Ti3+ self-doped TiO2 hollow nanocrystals with enhanced visible-light photoactivity. Appl Catal B 191:94–105.  https://doi.org/10.1016/j.apcatb.2016.03.021 CrossRefGoogle Scholar
  4. Choi W, Termin A, Hoffmann MR (1994) The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J Phys Chem 98(51):13669–13679.  https://doi.org/10.1021/j100102a038 CrossRefGoogle Scholar
  5. Dong GH, Ho WK, Zhang LZ (2015) Photocatalytic NO removal on BiOI surface: the change from nonselective oxidation to selective oxidation. Appl Catal B 168–169:490–496.  https://doi.org/10.1016/j.apcatb.2015.01.014 CrossRefGoogle Scholar
  6. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(79):37–38CrossRefGoogle Scholar
  7. Hegazy A, Prouzet E (2012) Room temperature synthesis and thermal evolution of porous nanocrystalline TiO2 anatase. Chem Mater 24(2):245–254CrossRefGoogle Scholar
  8. Heng HM, Gan Q, Meng PC, Liu X (2017) The visible-light-driven typeIII heterojunction H3PW12O40/TiO2-In2S3: a photocatalysis composite with enhanced photocatalytic activity. J Alloy Compd 696:51–59.  https://doi.org/10.1016/j.jallcom.2016.11.116 CrossRefGoogle Scholar
  9. Hong YZ, Jiang YH, Li CS, Fan WQ, Yan X, Yan M, Shi WD (2016) In-situ synthesis of direct solid-state Z-scheme V2O5/g-C3N4, heterojunctions with enhanced visible light efficiency in photocatalytic degradation of pollutants. Appl Catal B 180:663–673.  https://doi.org/10.1016/j.apcatb.2015.06.057 CrossRefGoogle Scholar
  10. Karkas MD, Verho O, Johnston EV, Åkermark B (2014) Artificial photosynthesis: molecular systems for catalytic water oxidation. Chem Rev 114(24):11863–12001CrossRefGoogle Scholar
  11. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1998) Formation of titanium oxide nanotube. Langmuir 14(12):3160–3163CrossRefGoogle Scholar
  12. Lei S, Duan W (2008) Highly active mixed-phase TiO2 photocatalysts fabricated at low temperature and the correlation between phase composition and photocatalytic activity. J Environ Sci 20(10):1263–1267.  https://doi.org/10.1016/S1001-0742(08)62219-6 CrossRefGoogle Scholar
  13. Li GH, Gray KA (2007) Preparation of mixed-phase titanium dioxide nanocomposites via solvothermal processing. Chem Mater 19(5):1143–1146CrossRefGoogle Scholar
  14. Li L, Wu QY, Guo YH, Hu CW (2005) Nanosize and bimodal porous polyoxotungstate-anatase TiO2 composites: preparation and photocatalytic degradation of organophosphorus pesticide using visible-light excitation. Micropor Mesopor Mater 87(1):1–9.  https://doi.org/10.1016/j.micromeso.2005.07.035 CrossRefGoogle Scholar
  15. Li KX, Guo YN, Ma FY, Li HC, Chen L, Guo YH (2010a) Design of ordered mesoporous H3PW12O40-titania materials and their photocatalytic activity to dye methyl orange degradation. Catal Commun 11(9):839–843.  https://doi.org/10.1016/j.catcom.2010.03.004 CrossRefGoogle Scholar
  16. Li KX, Yang X, Guo YN, Ma FY, Li HC, Chen L, Guo YH (2010b) Design of mesostructured H3PW12O40-titania materials with controllable structural orderings and pore geometries and their simulated sunlight photocatalytic activity towards diethyl phthalate degradation. Appl Catal B 99:364–375.  https://doi.org/10.1016/j.apcatb.2010.07.012 CrossRefGoogle Scholar
  17. Li KX, Yan LS, Zeng ZX, Luo SL, Luo XB, Liu XM, Guo HQ, Guo YH (2014) Fabrication of H3PW12O40-doped carbon nitride nanotubes by one-step hydrothermal treatment strategy and their efficient visible-light photocatalytic activity toward representative aqueous persistent organic pollutants degradation. Appl Catal B 156–157:141–152.  https://doi.org/10.1016/j.apcatb.2014.03.010 CrossRefGoogle Scholar
  18. Li HY, Ren FZ, Liu JF, Wang QL, Li QY, Yang JJ, Wang YX (2015) Endowing single-electron-trapped oxygen vacancy self-modified titanium dioxide with visible-light photocatalytic activity by grafting Fe(III) nanocluster. Appl Catal B 172:37–45.  https://doi.org/10.1016/j.apcatb.2015.02.008 Google Scholar
  19. Li X, Yu JG, Jaroniec M (2016) Hierarchical photocatalysts. Chem Soc Rev 45(9):2603–2636CrossRefGoogle Scholar
  20. Low JX, Cheng B, Yu JG (2017) Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2. Appl Surf Sci 392:658–686.  https://doi.org/10.1016/j.apsusc.2016.09.093 CrossRefGoogle Scholar
  21. Lu N, Zhao YH, Liu HB, Guo YH, Yuan X, Xu H, Peng HF, Qin HW (2012) Design of polyoxometallate–titania composite film (H3PW12O40/TiO2) for the degradation of an aqueous dye rhodamine B under the simulated sunlight irradiation. J Hazard Mater 199–200:1–8.  https://doi.org/10.1016/j.jhazmat.2011.08.070 CrossRefGoogle Scholar
  22. Luo Z, Poyraz AS, Kuo CH, Miao R, Meng YT, Chen SY, Jiang T, Wenos C, Suib SL (2015) Crystalline mixed phase (anatase/rutile) mesoporous titanium dioxides for visible light photocatalytic activity. Chem Mater 27(1):6–17.  https://doi.org/10.1021/cm5035112 CrossRefGoogle Scholar
  23. Mattos de FCG, Carvalho de ENCB, Freitas de EF, Paiva MF, Ghesti GF, Macedo de JL, Dias SCL, Dias JA (2017) Acidity and characterization of 12-tungstophosphoric acid supported on silica-alumina. J Braz Chem Soc 28(2):336–347.  https://doi.org/10.5935/0103-5053.20160183 Google Scholar
  24. Murakami N, Kamai T, Tsubota T, Ohno T (2010) Control of the crystal structure of titanium (IV) oxide by hydrothermal treatment of a titanate nanotube under acidic conditions. CrystEngComm 12(2):532–537CrossRefGoogle Scholar
  25. Prier CK, Rankic DA, MacMillan DWC (2013) Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem Rev 113(7):5322–5363CrossRefGoogle Scholar
  26. Qu YQ, Duan XF (2013) Progress, challenge and perspective of heterogeneous photocatalysts. Chem Soc Rev 42(7):2568–2580CrossRefGoogle Scholar
  27. Rengifo-Herrera JA, Blanco M, Wist J, Florian P, Pizzio LR (2016) TiO2 modified with polyoxotungstates should induce visible-light absorption and high photocatalytic activity through the formation of surface complexes. Appl Catal B 189:99–109.  https://doi.org/10.1016/j.apcatb.2016.02.033 CrossRefGoogle Scholar
  28. Reza Gholipour M, Dinh CT, Beland F, Do TO (2015) Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting. Nanoscale 7(18):8187–8208.  https://doi.org/10.1039/C4NR07224C CrossRefGoogle Scholar
  29. Ruales-Lonfat C, Barona JF, Sienkiewicz A, Bensimon M, Velez-Colmenares J, Benítez N, Pulgarín C (2015) Iron oxides semiconductors are efficient for solar water disinfection: a comparison with photo-Fenton processes at neutral pH. Appl Catal B 166−167:497–508.  https://doi.org/10.1016/j.apcatb.2014.12.007 CrossRefGoogle Scholar
  30. Scanlon DO, Dunnill CW, Buckeridge J, Shevlin SA, Logsdail AJ, Woodley SM, Catlow CRA, Powell MJ, Palgrave RG, Parkin IP, Watson GW, Keal TW, Sherwood P, Walsh A, Sokol AA (2013) Band alignment of rutile and anatase TiO2. Nat Mater 12(9):798–801.  https://doi.org/10.1038/nmat3697 CrossRefGoogle Scholar
  31. Storck S, Bretinger H, Maier WF (1998) Characterization of micro- and mesoporous solids by physisorption methods and pore-size analysis. Appl Catal A 174(1–2):137–146.  https://doi.org/10.1016/S0926-860X(98)00164-1 CrossRefGoogle Scholar
  32. Sun ZX, Zhang YZ, Li N, Xu L, Wang TQ (2015) Enhanced photoconductivity of a polyoxometalate-TiO2 composite for gas sensing applications. J Mater Chem C 3(24):6153–6157.  https://doi.org/10.1039/C5TC00904A CrossRefGoogle Scholar
  33. Wang Y, Feng CX, Zhang M, Yang JJ, Zhang ZJ (2010) Enhanced visible light photocatalytic activity of N-doped TiO2 in relation to single-electron-trapped oxygen vacancy and doped-nitrogen. Appl Catal B 100:84–90.  https://doi.org/10.1016/j.apcatb.2010.07.015 CrossRefGoogle Scholar
  34. Wang Y, Feng CX, Zhang M, Yang JJ, Zhang ZJ (2011) Visible light active N-doped TiO2 prepared from different precursors: origin of the visible light absorption and photoactivity. Appl Catal B 104:268–274.  https://doi.org/10.1016/j.apcatb.2011.03.020 CrossRefGoogle Scholar
  35. Wang H, Lang XF, Hao R, Guo L, Li JH, Wang LH, Han XD (2016) Facet-defined AgCl nanocrystals with surface-electronic-structure-dominated photoreactivities. Nano Energy 19:8–16.  https://doi.org/10.1016/j.nanoen.2015.11.022 CrossRefGoogle Scholar
  36. White JL, Baruch MF, Pander JE III, Hu Y, Fortmeyer IC, Park JE, Zhang T, Liao K, Gu J, Yan Y, Shaw TW, Abelev E, Bocarsly AB (2015) Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes. Chem Rev 115(23):12888–12935.  https://doi.org/10.1021/acs.chemrev.5b00370 CrossRefGoogle Scholar
  37. Willkomm J, Orchard KL, Reynal A, Pastor E, Durrant JR, Reisner E (2016) Dye-sensitised semiconductors modified with molecular catalysts for light-driven H2 production. Chem Soc Rev 45(1):9–23.  https://doi.org/10.1039/C5CS00733J CrossRefGoogle Scholar
  38. Wu MM, Lin G, Chen DH, Wang GG, He D, Feng SH, Xu RR (2002) Sol-hydrothermal synthesis and hydrothermally structural evolution of nanocrystal titanium dioxide. Chem Mater 14(5):1974–1980.  https://doi.org/10.1021/cm0102739 CrossRefGoogle Scholar
  39. Xie YJ, Wu ZJ, Zhang X, Ma PJ, Piao LY (2014) Nuclear factor-Κb-a pivotal transcription factor in chronic inflammatory diseases. Progress Chemistry 26(7):1120–1131.  https://doi.org/10.7536/PC140124 Google Scholar
  40. Xu L, Yang X, Guo YH, Ma FY, Guo YN, Yuan X, Huo MX (2010) Simulated sunlight photodegradation of aqueous phthalate esters catalyzed by the polyoxotungstate/titania nanocomposite. J Hazard Mater 178(1–3):1070–1077.  https://doi.org/10.1016/j.jhazmat.2010.02.049 CrossRefGoogle Scholar
  41. Xu HQ, Hu JH, Wang DK, Li ZH, Zhang Q, Luo Y, Yu SH, Jiang HL (2015) Visible-light photoreduction of CO2 in a metal–organic framework: boosting electron–hole separation via electron trap states. J Am Chem Soc 137(42):13440–13443.  https://doi.org/10.1021/jacs.5b08773 CrossRefGoogle Scholar
  42. Yang JJ, Jin ZS, Wang XD, Li W, Zhang JW, Zhang SL, Guo XY, Zhang ZJ (2003) Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2. Dalton Trans (20):3898–3901.  https://doi.org/10.1039/B305585J
  43. Yin S, Uchida S, Fujishiro Y, Aki M, Sato T (1999) Phase transformation of protonic layered tetratitanate under solvothermal conditions. J Mater Chem 9(5):1191–1195.  https://doi.org/10.1039/A808064J CrossRefGoogle Scholar
  44. Yu JC, Yu JG, Ho WK, Zhang LZ (2001) Preparation of highly photocatalytic active nano-sized TiO2 particles via ultrasonic irradiation. Chem Commun (19):1942–1943.  https://doi.org/10.1039/B105471F
  45. Yu JG, Yu JC, Leung MKP, Ho WK, Cheng B, Zhao XJ, Zhao JC (2003) Effects of acidic and basic hydrolysis catalysts on the photocatalytic activity and microstructures of bimodal mesoporous titania. J Catal 217(1):69–78.  https://doi.org/10.1016/S0021-9517(03)00034-4 Google Scholar
  46. Yu JG, Xiong JF, Cheng B, Liu SW (2005) Fabrication and characterization of Ag-TiO2, multiphase nanocomposite thin films with enhanced photocatalytic activity. Appl Catal B 60:211–221.  https://doi.org/10.1016/j.apcatb.2005.03.009 CrossRefGoogle Scholar
  47. Yu JG, Low JX, Xiao W, Zhou P, Jaroniec M (2014) Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed {001} and {101} facets. J Am Chem Soc 136(25):8839–8842.  https://doi.org/10.1021/ja5044787 CrossRefGoogle Scholar
  48. Zhang M, Jin ZS, Zhang JW, Guo XY, Yang JJ, Li W, Wang XD, Zhang ZJ (2004a) Effect of annealing temperature on morphology, structure and photocatalytic behavior of nanotubed H2Ti2O4(OH)2. J Mol Catal A 217(1–2):203–210.  https://doi.org/10.1016/j.molcata.2004.03.032 CrossRefGoogle Scholar
  49. Zhang SL, Li W, Jin ZS, Yang JJ, Zhang JW, Du ZL, Zhang ZJ (2004b) Study on ESR and inter-related properties of vacuum-dehydrated nanotubed titanic acid. J Solid State Chem 177(4–5):1365–1371.  https://doi.org/10.1016/j.jssc.2003.11.027 CrossRefGoogle Scholar
  50. Zhang H, Wang G, Chen D, Lv XJ, Li JH (2008) Tuning photoelectrochemical performances of Ag-TiO2 nanocomposites via reduction/oxidation of Ag. Chem Mater 20(20):6543–6549.  https://doi.org/10.1021/cm801796q CrossRefGoogle Scholar
  51. Zhang SQ, Chen L, Liu HB, Guo W, Yang YX, Guo YH, Huo MX (2012) Design of H3PW12O40/TiO2 and Ag/H3PW12O40/TiO2 film-coated optical fiber photoreactor for the degradation of aqueous rhodamine B and 4-nitrophenol under simulated sunlight irradiation. Chem Eng J 200–202:300–309.  https://doi.org/10.1016/j.cej.2012.06.060 CrossRefGoogle Scholar
  52. Zhang JY, Wang YH, Jin J, Zhang J, Lin Z, Huang F, Yu JG (2013) Efficient visible-light photocatalytic hydrogen evolution and enhanced photostability of core/shell CdS/g-C3N4 nanowires. ACS Appl Mater Interfaces 5(20):10317–10324.  https://doi.org/10.1021/am403327g CrossRefGoogle Scholar
  53. Zhang L, Wang WZ, Jiang D, Gao ER, Sun SM (2015) Photoreduction of CO2 on BiOCl nanoplates with the assistance of photoinduced oxygen vacancies. Nano Res 8(3):821–831.  https://doi.org/10.1007/s12274-014-0564-2 CrossRefGoogle Scholar
  54. Zhu SY, Liang SJ, Gu Q, Xie LY, Wang JX, Ding ZX, Liu P (2012) Effect of Au supported TiO2 with dominant exposed {001} facets on the visible-light photocatalytic activity. Appl Catal B 119−120:146–155.  https://doi.org/10.1016/j.apcatb.2012.02.020 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical EngineeringHenan UniversityKaifengChina

Personalised recommendations