Continual model of magnetic dynamics for antiferromagnetic particles in analyzing size effects on Morin transition in hematite nanoparticles

  • I. Mishchenko
  • M. Chuev
  • S. Kubrin
  • T. Lastovina
  • V. Polyakov
  • A. Soldatov
Research Paper


Alternative explanation to the effect of disappearance of the Morin transition on hematite nanoparticles with their size decreasing is proposed basing on an idea of the predominant role of the shape anisotropy for nanosize particles. Three types of the magnetic structure of hematite nanoparticles with various sizes are found by Mössbauer spectroscopy: coexistence of the well-pronounced antiferromagnetic and weakly ferromagnetic phases for particles with average diameters of about 55 nm, non-uniform distribution of the magnetization axes which concentrate on the vicinity of the basal plane (111) for prolonged particles with cross sections of about 20 nm, and uniform distribution of the easy axes in regard to the crystalline directions for 3-nm particles. Description of the temperature evolution of experimental data within novel model of the magnetic dynamics for antiferromagnetic particles which accounts the exchange, relativistic, and anisotropy interactions is provided, and the structural as well as energy characteristics of the studied systems are reconstructed.


Hematite nanoparticles Magnetic dynamics Exchange interaction Dzyaloshinskii–Moriya interaction Shape anisotropy Mössbauer spectroscopy 



Authors thank Prof. J. Litterst and Dr. M. Kracken at the Technical University of Braunschweig for the experimental spectra of dextran-coated nanoparticles.

Funding information

Experimental part of this work (section “Samples and experiment”) was supported by the Russian Ministry for Education and Science, project no. 14.587.21.0027. Theoretical and calculation part (section “Results of analysis”) was carried out under Program of Federal Agency for Scientific Organizations of Russia.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Afanas’ev AM, Chuev MA (1995) Discrete forms of Mössbauer spectra. JETP 80(3):560–567Google Scholar
  2. Bødker F, Hansen MF, Koch CB, Lefmann K, Mørup S (2000) Magnetic properties of hematite nanoparticles. Phys Rev B 61(10):6826–6838CrossRefGoogle Scholar
  3. Bordonali L et al (2012) 1H-NMR study of the spin dynamics of fine superparamagnetic nanoparticles. Phys Rev B 85(7):174426CrossRefGoogle Scholar
  4. Chuev MA (2011) Multi-level relaxation model for describing the Mössbauer spectra of single-domain particles in the presence of quadrupolar hyperfine interaction. J Phys Condens Matter 23(11):426003CrossRefGoogle Scholar
  5. Chuev MA (2012) On the thermodynamics of antiferromagnetic nanoparticles by example of Mössbauer spectroscopy. JETP Lett 95(6):295–301CrossRefGoogle Scholar
  6. Chuev MA (2014) Macroscopic quantum effects observed in Mössbauer spectra of antiferromagnetic nanoparticles. Hyperfine Interact 226:111–122CrossRefGoogle Scholar
  7. Chuev MA (2016) Nutations of magnetization of sublattices and their role in the formation of Mössbauer spectra of antiferromagnetic nanoparticles. JETP Lett 103(3):175–180CrossRefGoogle Scholar
  8. Chuev MA (2017) Excitation spectrum of the Néel ensemble of antiferromagnetic nanoparticles as revealed in Mössbauer spectroscopy. Adv Condens Matter Phys 2017(15):6209206Google Scholar
  9. Chuev MA, Hesse J (2009) Non-equilibrium magnetism of single-domain particles for characterization of magnetic nanomaterials. In: Tamayo KB (ed) Magnetic properties of solids. Nova Science, New York, pp 1–104Google Scholar
  10. Chuev MA, Mishchenko IN, Kubrin SP, Lastovina TA (2017) Novel insight into the effect of disappearance of the Morin transition in hematite nanoparticles. JETP Lett 105(11):700–705CrossRefGoogle Scholar
  11. Dzyaloshinskii IE (1957) Thermodynamic theory of “weak” ferromagnetism in antiferromagnetic substances. Sov Phys JETP 5:1259–1272Google Scholar
  12. Jones DH, Srivastava KKP (1986) Many-state relaxation model for the Mössbauer spectra of superparamagnets. Phys Rev B 34(11):7542–7548CrossRefGoogle Scholar
  13. Kündig W, Bömmel H, Constabaris G, Lindquist RH (1966) Some properties of supported small α-Fe2O3 particles determined with the Mössbauer effect. Phys Rev 142(2):327–333CrossRefGoogle Scholar
  14. Mischenko I, Chuev M (2016) Quantum-mechanical and continual models of magnetic dynamics for antiferromagnetic particles in Mössbauer spectra analysis. Hyperfine Interact 237(21):1–11Google Scholar
  15. Mischenko I, Chuev M, Cherepanov V, Polikarpov M (2014) Antiferromagnetic fluctuations in CePdSn Kondo compound from Mössbauer spectroscopy. Hyperfine Interact 226:299–308CrossRefGoogle Scholar
  16. Morin FJ (1950) Magnetic susceptibility of α-Fe2O3 and α-Fe2O3 with added titanium. Phys Rev 78:819–820CrossRefGoogle Scholar
  17. Moriya T (1960) Anisotropic superexchange interaction and weak ferromagnetism. Phys Rev 120(1):91–98CrossRefGoogle Scholar
  18. Özdemir Ö, Dunlop DJ, Berquó TS (2008) Morin transition in hematite: size dependence and thermal hysteresis. Geochem Geophys Geosyst 9(10):1–12CrossRefGoogle Scholar
  19. Rancourt DG (1989) Accurate site populations from Mössbauer spectroscopy. Nucl Instr Meth Phys Res B 44:199–210CrossRefGoogle Scholar
  20. van der Woude F (1966) Mössbauer effect in α-Fe2O3. Phys Status Solidi 17:417–432 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • I. Mishchenko
    • 1
  • M. Chuev
    • 1
    • 2
  • S. Kubrin
    • 3
  • T. Lastovina
    • 4
  • V. Polyakov
    • 4
  • A. Soldatov
    • 4
  1. 1.National Research Centre “Kurchatov Institute”MoscowRussia
  2. 2.Institute of Physics and Technology of Russian Academy of SciencesMoscowRussia
  3. 3.Research Institute of PhysicsSouthern Federal UniversityRostov-on-DonRussia
  4. 4.International Research Centre “Smart materials”Southern Federal UniversityRostov-on-DonRussia

Personalised recommendations