Advertisement

Metal phosphonate coordination networks and frameworks as precursors of electrocatalysts for the hydrogen and oxygen evolution reactions

  • Rui Zhang
  • Sayed M. El-Refaei
  • Patrícia A. Russo
  • Nicola Pinna
Perspectives
  • 328 Downloads
Part of the following topical collections:
  1. 20th Anniversary Issue: From the editors

Abstract

The hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) play key roles in the conversion of energy derived from renewable energy sources into chemical energy. Efficient, robust, and inexpensive electrocatalysts are necessary for driving these reactions at high rates at low overpotentials and minimize energetic losses. Recently, electrocatalysts derived from hybrid metal phosphonate compounds have shown high activity for the HER or OER. We review here the utilization of metal phosphonate coordination networks and metal-organic frameworks as precursors/templates for transition-metal phosphides, phosphates, or oxyhydroxides generated in situ in alkaline solutions, and their electrocatalytic performance in HER or OER.

Keywords

Metal phosphonate Water splitting Electrocatalysis 

Notes

Funding information

R.Z. acknowledges the fellowship from the China Scholarship Council (CSC). P.A.R. acknowledges the support from the DFG (RU2012/2-1).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Alberti G, Vivani R, Marmottini F, Zappelli P (1998) Microporous solids based on pillared metal(IV) phosphates and phosphonates. J Porous Mater 5:205–220.  https://doi.org/10.1023/a:1009678120336 CrossRefGoogle Scholar
  2. Bai Y, Zhang H, Li X, Liu L, Xu H, Qiu H, Wang Y (2015) Novel peapod-like Ni2P nanoparticles with improved electrochemical properties for hydrogen evolution and lithium storage. Nanoscale 7:1446–1453.  https://doi.org/10.1039/C4NR05862C CrossRefGoogle Scholar
  3. Chen W-F, Sasaki K, Ma C, Frenkel AI, Marinkovic N, Muckerman JT, Zhu Y, Adzic RR (2012) Hydrogen-evolution catalysts based on non-noble metal nickel–molybdenum nitride Nanosheets. Angew Chem Int Ed 51:6131–6135.  https://doi.org/10.1002/anie.201200699 CrossRefGoogle Scholar
  4. Chen X, Peng Y, Han X, Liu Y, Lin X, Cui Y (2017) Sixteen isostructural phosphonate metal-organic frameworks with controlled Lewis acidity and chemical stability for asymmetric catalysis. Nat Commun 8:2171.  https://doi.org/10.1038/s41467-017-02335-0 CrossRefGoogle Scholar
  5. Cheng L, Huang W, Gong Q, Liu C, Liu Z, Li Y, Dai H (2014) Ultrathin WS2 nanoflakes as a high-performance electrocatalyst for the hydrogen evolution reaction. Angew Chem Int Ed 53:7860–7863.  https://doi.org/10.1002/anie.201402315 CrossRefGoogle Scholar
  6. Clearfield A (1998a) Organically pillared micro- and mesoporous materials. Chem Mater 10:2801–2810.  https://doi.org/10.1021/cm9802191 CrossRefGoogle Scholar
  7. Clearfield A (1998b) Metal phosphonate chemistry. In: Karlin KD (Ed) Progress in inorganic chemistry, vol. 47. John Wiley & Sons, Inc., New York, pp 371–510.  https://doi.org/10.1002/9780470166482.ch4
  8. Clearfield A, Demandis K (eds) (2011) Metal phosphonate chemistry: from synthesis to applications RSC publishing. UK.  https://doi.org/10.1039/9781849733571
  9. Cook TR, Dogutan DK, Reece SY, Surendranath Y, Teets TS, Nocera DG (2010) Solar energy supply and storage for the legacy and nonlegacy worlds. Chem Rev 110:6474–6502.  https://doi.org/10.1021/cr100246c CrossRefGoogle Scholar
  10. Dau H, Limberg C, Reier T, Risch M, Roggan S, Strasser P (2010) The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis. ChemCatChem 2:724–761.  https://doi.org/10.1002/cctc.201000126 CrossRefGoogle Scholar
  11. Dines MB, Cooksey RE, Griffith PC, Lane RH (1983) Mixed-component layered tetravalent metal phosphonates/phosphates as precursors for microporous materials. Inorg Chem 22:1003–1004.  https://doi.org/10.1021/ic00148a036 CrossRefGoogle Scholar
  12. Downes CA, Marinescu SC (2017) Electrocatalytic metal–organic frameworks for energy applications. ChemSusChem 10:4374–4392.  https://doi.org/10.1002/cssc.201701420 CrossRefGoogle Scholar
  13. El Haskouri J, Guillem C, Latorre J, Beltrán A, Beltrán D, Amorós P (2004) S+I- ionic formation mechanism to new mesoporous aluminum phosphonates and diphosphonates. Chem Mater 16:4359–4372.  https://doi.org/10.1021/cm048988+ CrossRefGoogle Scholar
  14. Gagnon KJ, Perry HP, Clearfield A (2012) Conventional and unconventional metal–organic frameworks based on phosphonate ligands: MOFs and UMOFs. Chem Rev 112:1034–1054.  https://doi.org/10.1021/cr2002257 CrossRefGoogle Scholar
  15. Gong M, Li Y, Wang H, Liang Y, Wu JZ, Zhou J, Wang J, Regier T, Wei F, Dai H (2013) An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation. J Am Chem Soc 135:8452–8455.  https://doi.org/10.1021/ja4027715 CrossRefGoogle Scholar
  16. Goura J, Chandrasekhar V (2015) Molecular metal phosphonates. Chem Rev 115:6854–6965.  https://doi.org/10.1021/acs.chemrev.5b00107 CrossRefGoogle Scholar
  17. Gray HB (2009) Powering the planet with solar fuel. Nat Chem 1:7.  https://doi.org/10.1038/nchem.141 CrossRefGoogle Scholar
  18. Han L, Dong S, Wang E (2016) Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction. Adv Mater 28:9266–9291.  https://doi.org/10.1002/adma.201602270 CrossRefGoogle Scholar
  19. Hunter BM, Gray HB, Müller AM (2016) Earth-abundant heterogeneous water oxidation catalysts. Chem Rev 116:14120–14136.  https://doi.org/10.1021/acs.chemrev.6b00398 CrossRefGoogle Scholar
  20. Kanan MW, Nocera DG (2008) In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321:1072–1075.  https://doi.org/10.1126/science.1162018 CrossRefGoogle Scholar
  21. Kim H, Park J, Park I, Jin K, Jerng SE, Kim SH, Nam KT, Kang K (2015) Coordination tuning of cobalt phosphates towards efficient water oxidation catalyst. Nat Commun 6:8253.  https://doi.org/10.1038/ncomms9253 CrossRefGoogle Scholar
  22. Kong D, Wang H, Cha JJ, Pasta M, Koski KJ, Yao J, Cui Y (2013) Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett 13:1341–1347.  https://doi.org/10.1021/nl400258t CrossRefGoogle Scholar
  23. Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci U S A 103:15729–15735.  https://doi.org/10.1073/pnas.0603395103 CrossRefGoogle Scholar
  24. Liu Y, Guo S-X, Bond AM, Zhang J, Du S (2013) Cobalt(II) phosphonate coordination polymers: synthesis, characterization and application as oxygen evolution electrocatalysts in aqueous media and water-saturated hydrophobic 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid. Electrochim Acta 101:201–208.  https://doi.org/10.1016/j.electacta.2012.09.093 CrossRefGoogle Scholar
  25. Ma T-Y, Yuan Z-Y (2010) Organic-additive-assisted synthesis of hierarchically meso-/macroporous titanium phosphonates. Eur J Inorg Chem 2010:2941–2948.  https://doi.org/10.1002/ejic.201000204 CrossRefGoogle Scholar
  26. Ma T-Y, Yuan Z-Y (2011) Metal phosphonate hybrid mesostructures: environmentally friendly multifunctional materials for clean energy and other applications. ChemSusChem 4:1407–1419.  https://doi.org/10.1002/cssc.201100050 CrossRefGoogle Scholar
  27. Ma T-Y, Lin X-Z, Yuan Z-Y (2010) Cubic mesoporous titanium phosphonates with multifunctionality. Chem Eur J 16:8487–8494.  https://doi.org/10.1002/chem.201000364 CrossRefGoogle Scholar
  28. Maeda K (2004) Metal phosphonate open-framework materials. Microporous Mesoporous Mater 73:47–55.  https://doi.org/10.1016/j.micromeso.2003.10.018 CrossRefGoogle Scholar
  29. McCrory CCL, Jung S, Ferrer IM, Chatman SM, Peters JC, Jaramillo TF (2015) Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J Am Chem Soc 137:4347–4357.  https://doi.org/10.1021/ja510442p CrossRefGoogle Scholar
  30. McKone JR, Sadtler BF, Werlang CA, Lewis NS, Gray HB (2013) Ni–Mo Nanopowders for efficient electrochemical hydrogen evolution. ACS Catal 3:166–169.  https://doi.org/10.1021/cs300691m CrossRefGoogle Scholar
  31. Mei P, Pramanik M, Lee J, Ide Y, Alothman ZA, Kim JH, Yamauchi Y (2017) Highly ordered mesostructured vanadium phosphonate toward electrode materials for lithium-ion batteries. Chem Eur J 23:4344–4352.  https://doi.org/10.1002/chem.201604159 CrossRefGoogle Scholar
  32. Morozan A, Jaouen F (2012) Metal organic frameworks for electrochemical applications energy environ. Sci 5:9269–9290.  https://doi.org/10.1039/C2EE22989G Google Scholar
  33. Mutin PH, Guerrero G, Alauzun JG (2015) Sol-gel processing of phosphonate-based organic-inorganic hybrid materials. J Ceramic Soc Jpn 123:709–713.  https://doi.org/10.2109/jcersj2.123.709 CrossRefGoogle Scholar
  34. Pan Y, Hu W, Liu D, Liu Y, Liu C (2015) Carbon nanotubes decorated with nickel phosphide nanoparticles as efficient nanohybrid electrocatalysts for the hydrogen evolution reaction. J Mater Chem A 3:13087–13094.  https://doi.org/10.1039/C5TA02128F CrossRefGoogle Scholar
  35. Polarz S, Smarsly B, Bronstein L, Antonietti M (2001) From cyclodextrin assemblies to porous materials by silica templating. Angew Chem Int Ed 40:4417–4421.  https://doi.org/10.1002/1521-3773(20011203)40:23<4417::AID-ANIE4417>3.0.CO;2-P CrossRefGoogle Scholar
  36. Poojary DM, Grohol D, Clearfield A (1995) Synthesis and X-ray powder structure of a novel porous uranyl phenylphosphonate containing unidimensional channels flanked by hydrophobic regions. Angew Chem Int Ed 34:1508–1510.  https://doi.org/10.1002/anie.199515081 CrossRefGoogle Scholar
  37. Popczun EJ, McKone JR, Read CG, Biacchi AJ, Wiltrout AM, Lewis NS, Schaak RE (2013) Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J Am Chem Soc 135:9267–9270.  https://doi.org/10.1021/ja403440e CrossRefGoogle Scholar
  38. Pramanik M, Tsujimoto Y, Malgras V, Dou SX, Kim JH, Yamauchi Y (2015) Mesoporous iron phosphonate electrodes with crystalline frameworks for lithium-ion batteries. Chem Mater, 27:1082–1089.  https://doi.org/10.1021/cm5044045
  39. Reier T, Nong HN, Teschner D, Schlögl R, Strasser P (2017) Electrocatalytic oxygen evolution reaction in acidic environments – reaction mechanisms and catalysts. Adv. Energy Mater 7:1601275.  https://doi.org/10.1002/aenm.201601275 CrossRefGoogle Scholar
  40. Risch M, Shevchenko D, Anderlund MF, Styring S, Heidkamp J, Lange KM, Thapper A, Zaharieva I (2012) Atomic structure of cobalt-oxide nanoparticles active in light-driven catalysis of water oxidation. Int J Hydrogen Energy 37:8878–8888.  https://doi.org/10.1016/j.ijhydene.2012.01.138 CrossRefGoogle Scholar
  41. Saha J, Chowdhury DR, Jash P, Paul A (2017) Cobalt phosphonates as precatalysts for water oxidation: role of pore size in catalysis. Chem Eur J 23:12519–12526.  https://doi.org/10.1002/chem.201700882 CrossRefGoogle Scholar
  42. Salunkhe RR, Kaneti YV, Yamauchi Y (2017) Metal–organic framework-derived nanoporous metal oxides toward supercapacitor applications: progress and prospects. ACS Nano 11:5293–5308.  https://doi.org/10.1021/acsnano.7b02796 CrossRefGoogle Scholar
  43. Shevchenko D, Anderlund MF, Thapper A, Styring S (2011) Photochemical water oxidation with visible light using a cobalt containing catalyst. Energy Environ Sci 4:1284–1287.  https://doi.org/10.1039/C0EE00585A CrossRefGoogle Scholar
  44. Shimizu GKH, Vaidhyanathan R, Taylor JM (2009) Phosphonate and sulfonate metal organic frameworks. Chem Soc Rev 38:1430–1449.  https://doi.org/10.1039/B802423P CrossRefGoogle Scholar
  45. Stern L-A, Feng L, Song F, Hu X (2015) Ni2P as a Janus catalyst for water splitting: the oxygen evolution activity of Ni2P nanoparticles. Energy Environ Sci 8:2347–2351.  https://doi.org/10.1039/C5EE01155H CrossRefGoogle Scholar
  46. Stevens MB, Enman LJ, Batchellor AS, Cosby MR, Vise AE, Trang CDM, Boettcher SW (2017) Measurement techniques for the study of thin film heterogeneous water oxidation electrocatalysts. Chem Mater 29:120–140.  https://doi.org/10.1021/acs.chemmater.6b02796 CrossRefGoogle Scholar
  47. Suen N-T, Hung S-F, Quan Q, Zhang N, Xu Y-J, Chen HM (2017) Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem Soc Rev 46:337–365.  https://doi.org/10.1039/C6CS00328A CrossRefGoogle Scholar
  48. Trotochaud L, Ranney JK, Williams KN, Boettcher SW (2012) Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J Am Chem Soc 134:17253–17261.  https://doi.org/10.1021/ja307507a CrossRefGoogle Scholar
  49. Turner JA (2004) Sustainable hydrogen production. Science 305:972–974.  https://doi.org/10.1126/science.1103197 CrossRefGoogle Scholar
  50. Vrubel H, Hu X (2012) Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions. Angew Chem Int Ed 51:12703–12706.  https://doi.org/10.1002/anie.201207111 CrossRefGoogle Scholar
  51. Wang R, Dong XY, Du J, Zhao JY, Zang SQ (2017) MOF-derived bifunctional Cu3P nanoparticles coated by a N,P-codoped carbon shell for hydrogen evolution and oxygen reduction. Adv Mater 30.  https://doi.org/10.1002/adma.201703711
  52. Wang R, Dong X-Y, Du J, Zhao J-Y, Zang S-Q MOF-derived bifunctional Cu3P nanoparticles coated by a N,P-codoped carbon shell for hydrogen evolution and oxygen reduction. Adv Mater 1703711 doi: https://doi.org/10.1002/adma.201703711, 2018
  53. Wharmby MT, Miller SR, Groves JA, Margiolaki I, Ashbrook SE, Wright PA (2010) Yttrium bisphosphonate STA-13: a racemic phosphonate metal organic framework with permanent microporosity. Dalton Trans 39:6389–6391.  https://doi.org/10.1039/C0DT00233J CrossRefGoogle Scholar
  54. Xiao P, Chen W, Wang X (2015) A review of phosphide-based materials for electrocatalytic hydrogen evolution. Adv Energy Mater 5:1500985.  https://doi.org/10.1002/aenm.201500985 CrossRefGoogle Scholar
  55. Xing Z, Liu Q, Asiri AM, Sun X (2014) Closely interconnected network of molybdenum phosphide nanoparticles: a highly efficient electrocatalyst for generating hydrogen from water. Adv Mater 26:5702–5707.  https://doi.org/10.1002/adma.201401692 CrossRefGoogle Scholar
  56. Zeng M, Li Y (2015) Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. J Mater Chem A 3:14942–14962.  https://doi.org/10.1039/C5TA02974K CrossRefGoogle Scholar
  57. Zhang R, Russo PA, Buzanich AG, Jeon T, Pinna N (2017a) Hybrid organic–inorganic transition-metal phosphonates as precursors for water oxidation electrocatalysts. Adv Funct Mater 27:1703158.  https://doi.org/10.1002/adfm.201703158 CrossRefGoogle Scholar
  58. Zhang R, Russo PA, Buzanich AG, Jeon T, Pinna N (2017b) Hybrid organic–inorganic transition-metal phosphonates as precursors for water oxidation electrocatalysts. Adv Funct Mater 27.  https://doi.org/10.1002/adfm.201703158
  59. Zhang R, Russo PA, Feist M, Amsalem P, Koch N, Pinna N (2017c) Synthesis of nickel phosphide electrocatalysts from hybrid metal phosphonates. ACS Appl Mater Interfaces 9:14013–14022.  https://doi.org/10.1021/acsami.7b01178 CrossRefGoogle Scholar
  60. Zhou T, Wang D, Chun-Kiat Goh S, Hong J, Han J, Mao J, Xu R (2015) Bio-inspired organic cobalt(ii) phosphonates toward water oxidation. Energy Environ Sci 8:526–534.  https://doi.org/10.1039/C4EE03234A CrossRefGoogle Scholar
  61. Zhou T, du Y, Wang D, Yin S, Tu W, Chen Z, Borgna A, Xu R (2017) Phosphonate-based metal–organic framework derived co–P–C hybrid as an efficient electrocatalyst for oxygen evolution reaction. ACS Catal 7:6000–6007.  https://doi.org/10.1021/acscatal.7b00937 CrossRefGoogle Scholar
  62. Zhu J, Bu X, Feng P, Stucky GD (2000) An open-framework material with dangling organic functional groups in 24-ring channels. J Am Chem Soc 122:11563–11564.  https://doi.org/10.1021/ja002118l CrossRefGoogle Scholar
  63. Zhu Y-P, Ma T-Y, Liu Y-L, Ren T-Z, Yuan Z-Y (2014) Metal phosphonate hybrid materials: from densely layered to hierarchically nanoporous structures. Inorg Chem Front 1:360–383.  https://doi.org/10.1039/C4QI00011K CrossRefGoogle Scholar
  64. Zhu Y-P, Ren T-Z, Yuan Z-Y (2015a) Insights into mesoporous metal phosphonate hybrid materials for catalysis. Cat Sci Technol 5:4258–4279.  https://doi.org/10.1039/C5CY00107B CrossRefGoogle Scholar
  65. Zhu Y-P, Xu X, Su H, Liu Y-P, Chen T, Yuan Z-Y (2015b) Ultrafine metal phosphide nanocrystals in situ decorated on highly porous heteroatom-doped carbons for active electrocatalytic hydrogen evolution. ACS Appl Mater Interfaces 7:28369–28376.  https://doi.org/10.1021/acsami.5b09092 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für Chemie and IRIS AdlershofHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations