Metal phosphonate coordination networks and frameworks as precursors of electrocatalysts for the hydrogen and oxygen evolution reactions

  • Rui Zhang
  • Sayed M. El-Refaei
  • Patrícia A. Russo
  • Nicola Pinna
Part of the following topical collections:
  1. 20th Anniversary Issue: From the editors


The hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) play key roles in the conversion of energy derived from renewable energy sources into chemical energy. Efficient, robust, and inexpensive electrocatalysts are necessary for driving these reactions at high rates at low overpotentials and minimize energetic losses. Recently, electrocatalysts derived from hybrid metal phosphonate compounds have shown high activity for the HER or OER. We review here the utilization of metal phosphonate coordination networks and metal-organic frameworks as precursors/templates for transition-metal phosphides, phosphates, or oxyhydroxides generated in situ in alkaline solutions, and their electrocatalytic performance in HER or OER.


Metal phosphonate Water splitting Electrocatalysis 


Funding information

R.Z. acknowledges the fellowship from the China Scholarship Council (CSC). P.A.R. acknowledges the support from the DFG (RU2012/2-1).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Alberti G, Vivani R, Marmottini F, Zappelli P (1998) Microporous solids based on pillared metal(IV) phosphates and phosphonates. J Porous Mater 5:205–220. CrossRefGoogle Scholar
  2. Bai Y, Zhang H, Li X, Liu L, Xu H, Qiu H, Wang Y (2015) Novel peapod-like Ni2P nanoparticles with improved electrochemical properties for hydrogen evolution and lithium storage. Nanoscale 7:1446–1453. CrossRefGoogle Scholar
  3. Chen W-F, Sasaki K, Ma C, Frenkel AI, Marinkovic N, Muckerman JT, Zhu Y, Adzic RR (2012) Hydrogen-evolution catalysts based on non-noble metal nickel–molybdenum nitride Nanosheets. Angew Chem Int Ed 51:6131–6135. CrossRefGoogle Scholar
  4. Chen X, Peng Y, Han X, Liu Y, Lin X, Cui Y (2017) Sixteen isostructural phosphonate metal-organic frameworks with controlled Lewis acidity and chemical stability for asymmetric catalysis. Nat Commun 8:2171. CrossRefGoogle Scholar
  5. Cheng L, Huang W, Gong Q, Liu C, Liu Z, Li Y, Dai H (2014) Ultrathin WS2 nanoflakes as a high-performance electrocatalyst for the hydrogen evolution reaction. Angew Chem Int Ed 53:7860–7863. CrossRefGoogle Scholar
  6. Clearfield A (1998a) Organically pillared micro- and mesoporous materials. Chem Mater 10:2801–2810. CrossRefGoogle Scholar
  7. Clearfield A (1998b) Metal phosphonate chemistry. In: Karlin KD (Ed) Progress in inorganic chemistry, vol. 47. John Wiley & Sons, Inc., New York, pp 371–510.
  8. Clearfield A, Demandis K (eds) (2011) Metal phosphonate chemistry: from synthesis to applications RSC publishing. UK.
  9. Cook TR, Dogutan DK, Reece SY, Surendranath Y, Teets TS, Nocera DG (2010) Solar energy supply and storage for the legacy and nonlegacy worlds. Chem Rev 110:6474–6502. CrossRefGoogle Scholar
  10. Dau H, Limberg C, Reier T, Risch M, Roggan S, Strasser P (2010) The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis. ChemCatChem 2:724–761. CrossRefGoogle Scholar
  11. Dines MB, Cooksey RE, Griffith PC, Lane RH (1983) Mixed-component layered tetravalent metal phosphonates/phosphates as precursors for microporous materials. Inorg Chem 22:1003–1004. CrossRefGoogle Scholar
  12. Downes CA, Marinescu SC (2017) Electrocatalytic metal–organic frameworks for energy applications. ChemSusChem 10:4374–4392. CrossRefGoogle Scholar
  13. El Haskouri J, Guillem C, Latorre J, Beltrán A, Beltrán D, Amorós P (2004) S+I- ionic formation mechanism to new mesoporous aluminum phosphonates and diphosphonates. Chem Mater 16:4359–4372. CrossRefGoogle Scholar
  14. Gagnon KJ, Perry HP, Clearfield A (2012) Conventional and unconventional metal–organic frameworks based on phosphonate ligands: MOFs and UMOFs. Chem Rev 112:1034–1054. CrossRefGoogle Scholar
  15. Gong M, Li Y, Wang H, Liang Y, Wu JZ, Zhou J, Wang J, Regier T, Wei F, Dai H (2013) An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation. J Am Chem Soc 135:8452–8455. CrossRefGoogle Scholar
  16. Goura J, Chandrasekhar V (2015) Molecular metal phosphonates. Chem Rev 115:6854–6965. CrossRefGoogle Scholar
  17. Gray HB (2009) Powering the planet with solar fuel. Nat Chem 1:7. CrossRefGoogle Scholar
  18. Han L, Dong S, Wang E (2016) Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction. Adv Mater 28:9266–9291. CrossRefGoogle Scholar
  19. Hunter BM, Gray HB, Müller AM (2016) Earth-abundant heterogeneous water oxidation catalysts. Chem Rev 116:14120–14136. CrossRefGoogle Scholar
  20. Kanan MW, Nocera DG (2008) In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321:1072–1075. CrossRefGoogle Scholar
  21. Kim H, Park J, Park I, Jin K, Jerng SE, Kim SH, Nam KT, Kang K (2015) Coordination tuning of cobalt phosphates towards efficient water oxidation catalyst. Nat Commun 6:8253. CrossRefGoogle Scholar
  22. Kong D, Wang H, Cha JJ, Pasta M, Koski KJ, Yao J, Cui Y (2013) Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett 13:1341–1347. CrossRefGoogle Scholar
  23. Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci U S A 103:15729–15735. CrossRefGoogle Scholar
  24. Liu Y, Guo S-X, Bond AM, Zhang J, Du S (2013) Cobalt(II) phosphonate coordination polymers: synthesis, characterization and application as oxygen evolution electrocatalysts in aqueous media and water-saturated hydrophobic 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid. Electrochim Acta 101:201–208. CrossRefGoogle Scholar
  25. Ma T-Y, Yuan Z-Y (2010) Organic-additive-assisted synthesis of hierarchically meso-/macroporous titanium phosphonates. Eur J Inorg Chem 2010:2941–2948. CrossRefGoogle Scholar
  26. Ma T-Y, Yuan Z-Y (2011) Metal phosphonate hybrid mesostructures: environmentally friendly multifunctional materials for clean energy and other applications. ChemSusChem 4:1407–1419. CrossRefGoogle Scholar
  27. Ma T-Y, Lin X-Z, Yuan Z-Y (2010) Cubic mesoporous titanium phosphonates with multifunctionality. Chem Eur J 16:8487–8494. CrossRefGoogle Scholar
  28. Maeda K (2004) Metal phosphonate open-framework materials. Microporous Mesoporous Mater 73:47–55. CrossRefGoogle Scholar
  29. McCrory CCL, Jung S, Ferrer IM, Chatman SM, Peters JC, Jaramillo TF (2015) Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J Am Chem Soc 137:4347–4357. CrossRefGoogle Scholar
  30. McKone JR, Sadtler BF, Werlang CA, Lewis NS, Gray HB (2013) Ni–Mo Nanopowders for efficient electrochemical hydrogen evolution. ACS Catal 3:166–169. CrossRefGoogle Scholar
  31. Mei P, Pramanik M, Lee J, Ide Y, Alothman ZA, Kim JH, Yamauchi Y (2017) Highly ordered mesostructured vanadium phosphonate toward electrode materials for lithium-ion batteries. Chem Eur J 23:4344–4352. CrossRefGoogle Scholar
  32. Morozan A, Jaouen F (2012) Metal organic frameworks for electrochemical applications energy environ. Sci 5:9269–9290. Google Scholar
  33. Mutin PH, Guerrero G, Alauzun JG (2015) Sol-gel processing of phosphonate-based organic-inorganic hybrid materials. J Ceramic Soc Jpn 123:709–713. CrossRefGoogle Scholar
  34. Pan Y, Hu W, Liu D, Liu Y, Liu C (2015) Carbon nanotubes decorated with nickel phosphide nanoparticles as efficient nanohybrid electrocatalysts for the hydrogen evolution reaction. J Mater Chem A 3:13087–13094. CrossRefGoogle Scholar
  35. Polarz S, Smarsly B, Bronstein L, Antonietti M (2001) From cyclodextrin assemblies to porous materials by silica templating. Angew Chem Int Ed 40:4417–4421.<4417::AID-ANIE4417>3.0.CO;2-P CrossRefGoogle Scholar
  36. Poojary DM, Grohol D, Clearfield A (1995) Synthesis and X-ray powder structure of a novel porous uranyl phenylphosphonate containing unidimensional channels flanked by hydrophobic regions. Angew Chem Int Ed 34:1508–1510. CrossRefGoogle Scholar
  37. Popczun EJ, McKone JR, Read CG, Biacchi AJ, Wiltrout AM, Lewis NS, Schaak RE (2013) Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J Am Chem Soc 135:9267–9270. CrossRefGoogle Scholar
  38. Pramanik M, Tsujimoto Y, Malgras V, Dou SX, Kim JH, Yamauchi Y (2015) Mesoporous iron phosphonate electrodes with crystalline frameworks for lithium-ion batteries. Chem Mater, 27:1082–1089.
  39. Reier T, Nong HN, Teschner D, Schlögl R, Strasser P (2017) Electrocatalytic oxygen evolution reaction in acidic environments – reaction mechanisms and catalysts. Adv. Energy Mater 7:1601275. CrossRefGoogle Scholar
  40. Risch M, Shevchenko D, Anderlund MF, Styring S, Heidkamp J, Lange KM, Thapper A, Zaharieva I (2012) Atomic structure of cobalt-oxide nanoparticles active in light-driven catalysis of water oxidation. Int J Hydrogen Energy 37:8878–8888. CrossRefGoogle Scholar
  41. Saha J, Chowdhury DR, Jash P, Paul A (2017) Cobalt phosphonates as precatalysts for water oxidation: role of pore size in catalysis. Chem Eur J 23:12519–12526. CrossRefGoogle Scholar
  42. Salunkhe RR, Kaneti YV, Yamauchi Y (2017) Metal–organic framework-derived nanoporous metal oxides toward supercapacitor applications: progress and prospects. ACS Nano 11:5293–5308. CrossRefGoogle Scholar
  43. Shevchenko D, Anderlund MF, Thapper A, Styring S (2011) Photochemical water oxidation with visible light using a cobalt containing catalyst. Energy Environ Sci 4:1284–1287. CrossRefGoogle Scholar
  44. Shimizu GKH, Vaidhyanathan R, Taylor JM (2009) Phosphonate and sulfonate metal organic frameworks. Chem Soc Rev 38:1430–1449. CrossRefGoogle Scholar
  45. Stern L-A, Feng L, Song F, Hu X (2015) Ni2P as a Janus catalyst for water splitting: the oxygen evolution activity of Ni2P nanoparticles. Energy Environ Sci 8:2347–2351. CrossRefGoogle Scholar
  46. Stevens MB, Enman LJ, Batchellor AS, Cosby MR, Vise AE, Trang CDM, Boettcher SW (2017) Measurement techniques for the study of thin film heterogeneous water oxidation electrocatalysts. Chem Mater 29:120–140. CrossRefGoogle Scholar
  47. Suen N-T, Hung S-F, Quan Q, Zhang N, Xu Y-J, Chen HM (2017) Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem Soc Rev 46:337–365. CrossRefGoogle Scholar
  48. Trotochaud L, Ranney JK, Williams KN, Boettcher SW (2012) Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J Am Chem Soc 134:17253–17261. CrossRefGoogle Scholar
  49. Turner JA (2004) Sustainable hydrogen production. Science 305:972–974. CrossRefGoogle Scholar
  50. Vrubel H, Hu X (2012) Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions. Angew Chem Int Ed 51:12703–12706. CrossRefGoogle Scholar
  51. Wang R, Dong XY, Du J, Zhao JY, Zang SQ (2017) MOF-derived bifunctional Cu3P nanoparticles coated by a N,P-codoped carbon shell for hydrogen evolution and oxygen reduction. Adv Mater 30.
  52. Wang R, Dong X-Y, Du J, Zhao J-Y, Zang S-Q MOF-derived bifunctional Cu3P nanoparticles coated by a N,P-codoped carbon shell for hydrogen evolution and oxygen reduction. Adv Mater 1703711 doi:, 2018
  53. Wharmby MT, Miller SR, Groves JA, Margiolaki I, Ashbrook SE, Wright PA (2010) Yttrium bisphosphonate STA-13: a racemic phosphonate metal organic framework with permanent microporosity. Dalton Trans 39:6389–6391. CrossRefGoogle Scholar
  54. Xiao P, Chen W, Wang X (2015) A review of phosphide-based materials for electrocatalytic hydrogen evolution. Adv Energy Mater 5:1500985. CrossRefGoogle Scholar
  55. Xing Z, Liu Q, Asiri AM, Sun X (2014) Closely interconnected network of molybdenum phosphide nanoparticles: a highly efficient electrocatalyst for generating hydrogen from water. Adv Mater 26:5702–5707. CrossRefGoogle Scholar
  56. Zeng M, Li Y (2015) Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. J Mater Chem A 3:14942–14962. CrossRefGoogle Scholar
  57. Zhang R, Russo PA, Buzanich AG, Jeon T, Pinna N (2017a) Hybrid organic–inorganic transition-metal phosphonates as precursors for water oxidation electrocatalysts. Adv Funct Mater 27:1703158. CrossRefGoogle Scholar
  58. Zhang R, Russo PA, Buzanich AG, Jeon T, Pinna N (2017b) Hybrid organic–inorganic transition-metal phosphonates as precursors for water oxidation electrocatalysts. Adv Funct Mater 27.
  59. Zhang R, Russo PA, Feist M, Amsalem P, Koch N, Pinna N (2017c) Synthesis of nickel phosphide electrocatalysts from hybrid metal phosphonates. ACS Appl Mater Interfaces 9:14013–14022. CrossRefGoogle Scholar
  60. Zhou T, Wang D, Chun-Kiat Goh S, Hong J, Han J, Mao J, Xu R (2015) Bio-inspired organic cobalt(ii) phosphonates toward water oxidation. Energy Environ Sci 8:526–534. CrossRefGoogle Scholar
  61. Zhou T, du Y, Wang D, Yin S, Tu W, Chen Z, Borgna A, Xu R (2017) Phosphonate-based metal–organic framework derived co–P–C hybrid as an efficient electrocatalyst for oxygen evolution reaction. ACS Catal 7:6000–6007. CrossRefGoogle Scholar
  62. Zhu J, Bu X, Feng P, Stucky GD (2000) An open-framework material with dangling organic functional groups in 24-ring channels. J Am Chem Soc 122:11563–11564. CrossRefGoogle Scholar
  63. Zhu Y-P, Ma T-Y, Liu Y-L, Ren T-Z, Yuan Z-Y (2014) Metal phosphonate hybrid materials: from densely layered to hierarchically nanoporous structures. Inorg Chem Front 1:360–383. CrossRefGoogle Scholar
  64. Zhu Y-P, Ren T-Z, Yuan Z-Y (2015a) Insights into mesoporous metal phosphonate hybrid materials for catalysis. Cat Sci Technol 5:4258–4279. CrossRefGoogle Scholar
  65. Zhu Y-P, Xu X, Su H, Liu Y-P, Chen T, Yuan Z-Y (2015b) Ultrafine metal phosphide nanocrystals in situ decorated on highly porous heteroatom-doped carbons for active electrocatalytic hydrogen evolution. ACS Appl Mater Interfaces 7:28369–28376. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für Chemie and IRIS AdlershofHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations