Advertisement

Recent advances on Fe- and Mn-based cathode materials for lithium and sodium ion batteries

  • Xiaobo Zhu
  • Tongen Lin
  • Eric Manning
  • Yuancheng Zhang
  • Mengmeng Yu
  • Bin Zuo
  • Lianzhou Wang
Review
  • 443 Downloads
Part of the following topical collections:
  1. 20th Anniversary Issue: From the editors

Abstract

The ever-growing market of electrochemical energy storage impels the advances on cost-effective and environmentally friendly battery chemistries. Lithium-ion batteries (LIBs) are currently the most critical energy storage devices for a variety of applications, while sodium-ion batteries (SIBs) are expected to complement LIBs in large-scale applications. In respect to their constituent components, the cathode part is the most significant sector regarding weight fraction and cost. Therefore, the development of cathode materials based on Earth’s abundant elements (Fe and Mn) largely determines the prospects of the batteries. Herein, we offer a comprehensive review of the up-to-date advances on Fe- and Mn-based cathode materials for LIBs and SIBs, highlighting some promising candidates, such as Li- and Mn-rich layered oxides, LiNi0.5Mn1.5O4, LiFe1-xMnxPO4, NaxFeyMn1-yO2, Na4MnFe2(PO4)(P2O7), and Prussian blue analogs. Also, challenges and prospects are discussed to direct the possible development of cost-effective and high-performance cathode materials for future rechargeable batteries.

Keywords

Cathode materials Iron-based Manganese-based Lithium ion batteries Sodium ion batteries Energy storage 

Notes

Acknowledgments

Funding support from ARC through its LP and DP programs is acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Adamczyk E, Pralong V (2017) Na2Mn3O7: a suitable electrode material for Na-Ion batteries? Chem Mater 29:4645–4648.  https://doi.org/10.1021/acs.chemmater.7b01390 Google Scholar
  2. Ali G, Lee J-H, Susanto D, Choi S-W, Cho BW, Nam K-W, Chung KY (2016) Polythiophene-wrapped olivine NaFePO4 as a cathode for Na-Ion batteries. ACS Appl Mater Interfaces 8:15422–15429.  https://doi.org/10.1021/acsami.6b04014 Google Scholar
  3. Amalraj F et al (2013) Study of the lithium-rich integrated compound xLi2MnO3·(1-x)LiMO2 (x around 0.5; M = Mn, Ni, Co; 2:2:1) and its electrochemical activity as positive electrode in lithium cells. J Electrochem Soc 160:A324–A337.  https://doi.org/10.1149/2.070302jes Google Scholar
  4. Amine K, Tukamoto H, Yasuda H, Fujita Y (1997) Preparation and electrochemical investigation of LiMn2 − xMexO4 (Me: Ni, Fe, and x = 0.5, 1) cathode materials for secondary lithium batteries. J Power Sources 68:604–608.  https://doi.org/10.1016/S0378-7753(96)02590-6 Google Scholar
  5. Armstrong AR, Bruce PG (1996) Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature 381:499–500.  https://doi.org/10.1038/381499a0 Google Scholar
  6. Armstrong AR, Holzapfel M, Novák P, Johnson CS, Kang S-H, Thackeray MM, Bruce PG (2006) Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. J Am Chem Soc 128:8694–8698.  https://doi.org/10.1021/ja062027+ Google Scholar
  7. Armstrong AR, Tee DW, La Mantia F, Novák P, Bruce PG (2008) Synthesis of tetrahedral LiFeO2 and Its behavior as a cathode in rechargeable lithium batteries. J Am Chem Soc 130:3554–3559.  https://doi.org/10.1021/ja077651g Google Scholar
  8. Armstrong AR, Kuganathan N, Islam MS, Bruce PG (2011) Structure and lithium transport pathways in Li2FeSiO4 cathodes for lithium batteries. J Am Chem Soc 133:13031–13035.  https://doi.org/10.1021/ja2018543 Google Scholar
  9. Armstrong MJ, O’Dwyer C, Macklin WJ, Holmes JD (2014) Evaluating the performance of nanostructured materials as lithium-ion battery electrodes. Nano Res 7:1–62.  https://doi.org/10.1007/s12274-013-0375-x Google Scholar
  10. Arroyo-de Dompablo ME, Armand M, Tarascon JM, Amador U (2006) On-demand design of polyoxianionic cathode materials based on electronegativity correlations: an exploration of the Li2MSiO4 system (M=Fe, Mn, Co, Ni). Electrochem Commun 8:1292–1298.  https://doi.org/10.1016/j.elecom.2006.06.003 Google Scholar
  11. Banerjee A, Araujo RB, Ahuja R (2016) Unveiling the thermodynamic and kinetic properties of NaxFe(SO4)2 (x = 0-2): toward a high-capacity and low-cost cathode material. J Mater Chem A 4:17960–17969.  https://doi.org/10.1039/C6TA05330K Google Scholar
  12. Banerjee A, Shilina Y, Ziv B, Ziegelbauer JM, Luski S, Aurbach D, Halalay IC (2017) On the oxidation state of manganese ions in Li-Ion battery electrolyte solutions. J Am Chem Soc 139:1738–1741.  https://doi.org/10.1021/jacs.6b10781 Google Scholar
  13. Barpanda P, Djellab K, Recham N, Armand M, Tarascon J-M (2011) Direct and modified ionothermal synthesis of LiMnPO4 with tunable morphology for rechargeable Li-ion batteries. J Mater Chem 21:10143–10152.  https://doi.org/10.1039/C0JM04423G Google Scholar
  14. Barpanda P et al (2012) Sodium iron pyrophosphate: a novel 3.0V iron-based cathode for sodium-ion batteries. Electrochem Commun 24:116–119.  https://doi.org/10.1016/j.elecom.2012.08.028 Google Scholar
  15. Barpanda P et al (2013a) Na2FeP2O7: a safe cathode for rechargeable sodium-ion batteries. Chem Mater 25:3480–3487.  https://doi.org/10.1021/cm401657c Google Scholar
  16. Barpanda P, Ye T, Avdeev M, Chung S-C, Yamada A (2013b) A new polymorph of Na2MnP2O7 as a 3.6 V cathode material for sodium-ion batteries. J Mater Chem A 1:4194–4197.  https://doi.org/10.1039/C3TA10210F Google Scholar
  17. Barpanda P, Oyama G, Ling CD, Yamada A (2014a) Kröhnkite-Type Na2Fe(SO4)2·2H2O as a novel 3.25 V insertion compound for Na-Ion batteries. Chem Mater 26:1297–1299.  https://doi.org/10.1021/cm4033226 Google Scholar
  18. Barpanda P, Oyama G, Nishimura S-i, Chung S-C, Yamada A (2014b) A 3.8-V earth-abundant sodium battery electrode. Nat Commun 5:4358.  https://doi.org/10.1038/ncomms5358 https://www.nature.com/articles/ncomms5358#supplementary-information Google Scholar
  19. Berthelot R, Carlier D, Delmas C (2010) Electrochemical investigation of the P2–NaxCoO2 phase diagram. Nat Mater 10:74.  https://doi.org/10.1038/nmat2920 https://www.nature.com/articles/nmat2920#supplementary-information Google Scholar
  20. Billaud J, Clément RJ, Armstrong AR, Canales-Vázquez J, Rozier P, Grey CP, Bruce PG (2014a) β-NaMnO2: a high-performance cathode for sodium-ion batteries. J Am Chem Soc 136:17243–17248.  https://doi.org/10.1021/ja509704t Google Scholar
  21. Billaud J et al (2014b) Na0.67Mn1-xMgxO2 (0 [less-than-or-equal] x [less-than-or-equal] 0.2): a high capacity cathode for sodium-ion batteries. Energy Environ Sci 7:1387–1391.  https://doi.org/10.1039/C4EE00465E Google Scholar
  22. Bo S-H et al (2014) Structures of delithiated and degraded LiFeBO3, and their distinct changes upon electrochemical cycling. Inorg Chem 53:6585–6595.  https://doi.org/10.1021/ic500169g Google Scholar
  23. Boyadzhieva T, Koleva V, Zhecheva E, Nihtianova D, Mihaylov L, Stoyanova R (2015) Competitive lithium and sodium intercalation into sodium manganese phospho-olivine NaMnPO4 covered with carbon black. RSC Adv 5:87694–87705.  https://doi.org/10.1039/C5RA17299C Google Scholar
  24. Bridson JN, Quinlan SE, Tremaine PR (1998) Synthesis and crystal structure of maricite and sodium iron(III) hydroxyphosphate. Chem Mater 10:763–768.  https://doi.org/10.1021/cm9704847 Google Scholar
  25. Cao Y et al (2011) Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life. Adv Mater 23:3155–3160.  https://doi.org/10.1002/adma.201100904 Google Scholar
  26. Catti M, Montero-Campillo M (2011) First-principles modelling of lithium iron oxides as battery cathode materials. J Power Sources 196:3955–3961.  https://doi.org/10.1016/j.jpowsour.2010.11.062 Google Scholar
  27. Chen G, Shukla AK, Song X, Richardson TJ (2011) Improved kinetics and stabilities in Mg-substituted LiMnPO4. J Mater Chem 21:10126–10133.  https://doi.org/10.1039/C0JM04230G Google Scholar
  28. Chen H, Hautier G, Ceder G (2012) Synthesis, computed stability, and crystal structure of a new family of inorganic compounds: carbonophosphates. J Am Chem Soc 134:19619–19627.  https://doi.org/10.1021/ja3040834 Google Scholar
  29. Chen H et al (2013) Sidorenkite (Na3MnPO4CO3): a new intercalation cathode material for Na-Ion batteries. Chem Mater 25:2777–2786.  https://doi.org/10.1021/cm400805q Google Scholar
  30. Chen H, Dawson JA, Harding JH (2014) Effects of cationic substitution on structural defects in layered cathode materials LiNiO2. J Mater Chem A 2:7988–7996.  https://doi.org/10.1039/C4TA00637B Google Scholar
  31. Chen Z, Cao L, Chen L, Zhou H, Zheng C, Xie K, Kuang Y (2015) Mesoporous LiFeBO3/C hollow spheres for improved stability lithium-ion battery cathodes. J Power Sources 298:355–362.  https://doi.org/10.1016/j.jpowsour.2015.08.073 Google Scholar
  32. Chen R, Zhao T, Zhang X, Li L, Wu F (2016) Advanced cathode materials for lithium-ion batteries using nanoarchitectonics. Nanoscale Horiz 1:423–444.  https://doi.org/10.1039/C6NH00016A Google Scholar
  33. Cheng Q, He W, Zhang X, Li M, Wang L (2017) Modification of Li2MnSiO4 cathode materials for lithium-ion batteries: a review. J Mater Chem A 5:10772–10797.  https://doi.org/10.1039/C7TA00034K Google Scholar
  34. Chung SY, Bloking JT, Chiang YM (2002) Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater 1:123–128.  https://doi.org/10.1038/nmat732 Google Scholar
  35. Clark JM, Barpanda P, Yamada A, Islam MS (2014) Sodium-ion battery cathodes Na2FeP2O7 and Na2MnP2O7: diffusion behaviour for high rate performance. J Mater Chem A 2:11807–11812.  https://doi.org/10.1039/C4TA02383H Google Scholar
  36. Clément RJ, Bruce PG, Grey CP (2015) Review—manganese-based P2-type transition metal oxides as sodium-ion battery cathode materials. J Electrochem Soc 162:A2589–A2604.  https://doi.org/10.1149/2.0201514jes Google Scholar
  37. Clement RJ, Billaud J, Robert Armstrong A, Singh G, Rojo T, Bruce PG, Grey CP (2016) Structurally stable Mg-doped P2-Na2/3Mn1-yMgyO2 sodium-ion battery cathodes with high rate performance: insights from electrochemical, NMR and diffraction studies. Energy Environ Sci 9:3240–3251.  https://doi.org/10.1039/C6EE01750A Google Scholar
  38. Croguennec L, Deniard P, Brec R (1997a) Electrochemical cyclability of orthorhombic LiMnO2 : characterization of cycled materials. J Electrochem Soc 144:3323–3330.  https://doi.org/10.1149/1.1838013 Google Scholar
  39. Croguennec L, Deniard P, Brec R, Lecerf A (1997b) Nature of the stacking faults in orthorhombic LiMnO2. J Mater Chem 7:511–516.  https://doi.org/10.1039/A604947H Google Scholar
  40. Dai K, Mao J, Song X, Battaglia V, Liu G (2015) Na0.44MnO2 with very fast sodium diffusion and stable cycling synthesized via polyvinylpyrrolidone-combustion method. J Power Sources 285:161–168.  https://doi.org/10.1016/j.jpowsour.2015.03.087 Google Scholar
  41. Dai Z, Mani U, Tan HT, Yan Q (2017) Advanced Cathode Materials for Sodium-Ion Batteries: What Determines Our Choices? Small Methods 1:1700098.  https://doi.org/10.1002/smtd.201700098 Google Scholar
  42. Davidson IJ, McMillan RS, Murray JJ, Greedan JE (1995) Lithium-ion cell based on orthorhombic LiMnO2. J Power Sources 54:232–235.  https://doi.org/10.1016/0378-7753(94)02074-D Google Scholar
  43. de la Llave E et al (2016) Improving energy density and structural stability of manganese oxide cathodes for Na-Ion batteries by structural lithium substitution. Chem Mater 28:9064–9076.  https://doi.org/10.1021/acs.chemmater.6b04078 Google Scholar
  44. Delacourt C, Poizot P, Morcrette M, Tarascon JM, Masquelier C (2004) One-step low-temperature route for the preparation of electrochemically active LiMnPO4 powders. Chem Mater 16:93–99.  https://doi.org/10.1021/cm030347b Google Scholar
  45. Delacourt C et al (2005) Toward understanding of electrical limitations (Electronic, Ionic) in LiMPO4 (M = Fe , Mn) electrode materials. J Electrochem Soc 152:A913–A921.  https://doi.org/10.1149/1.1884787 Google Scholar
  46. Delmas C, Fouassier C, Hagenmuller P (1980) Structural classification and properties of the layered oxides. Physica B+C 99:81–85.  https://doi.org/10.1016/0378-4363(80)90214-4 Google Scholar
  47. Ding Z et al (2016) Three-dimensionally ordered macroporous Li2FeSiO4/C composite as a high performance cathode for advanced lithium ion batteries. J Power Sources 329:297–304.  https://doi.org/10.1016/j.jpowsour.2016.08.091 Google Scholar
  48. Dominko R (2008) Li2MSiO4 (M=Fe and/or Mn) cathode materials. J Power Sources 184:462–468.  https://doi.org/10.1016/j.jpowsour.2008.02.089 Google Scholar
  49. Dong XX, Huang CY, Jin Q, Zhou J, Feng P, Shi FY, Zhang DY (2017) Enhancing the rate performance of spherical LiFeBO3/C via Cr doping. RSC Adv 7:33745–33750.  https://doi.org/10.1039/C7RA03028B Google Scholar
  50. Dwibedi D, Araujo RB, Chakraborty S, Shanbogh PP, Sundaram NG, Ahuja R, Barpanda P (2015) Na2.44Mn1.79(SO4)3: a new member of the alluaudite family of insertion compounds for sodium ion batteries. J Mater Chem A 3:18564–18571.  https://doi.org/10.1039/C5TA04527D Google Scholar
  51. Ein-Eli Y, Howard WF, Lu SH, Mukerjee S, McBreen J, Vaughey JT, Thackeray MM (1998) LiMn2 − x Cu x O 4 Spinels (0.1 ⩽ x ⩽ 0.5): a new class of 5 V cathode materials for Li batteries: I. Electrochemical, Structural, and Spectroscopic Studies. J Electrochem Soc 145:1238–1244.  https://doi.org/10.1149/1.1838445 Google Scholar
  52. Ellis BL, Makahnouk WRM, Makimura Y, Toghill K, Nazar LF (2007) A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. Nat Mater 6:749–753 http://www.nature.com/nmat/journal/v6/n10/suppinfo/nmat2007_S1.html Google Scholar
  53. Erickson EM et al (2017) Review—recent advances and remaining challenges for lithium Ion battery cathodes: II. lithium-rich, xLi2MnO3·(1-x)LiNiaCobMncO2. J Electrochem Soc 164:A6341–A6348.  https://doi.org/10.1149/2.0461701jes Google Scholar
  54. Fang Y, Xiao L, Qian J, Ai X, Yang H, Cao Y (2014) Mesoporous amorphous FePO4 nanospheres as high-performance cathode material for sodium-ion batteries. Nano Lett 14:3539–3543.  https://doi.org/10.1021/nl501152f Google Scholar
  55. Fang Y, Liu Q, Xiao L, Ai X, Yang H, Cao Y (2015) High-performance olivine NaFePO4 microsphere cathode synthesized by aqueous electrochemical displacement method for sodium ion batteries. ACS Appl Mater Interfaces 7:17977–17984.  https://doi.org/10.1021/acsami.5b04691 Google Scholar
  56. Fisher CAJ, Kuganathan N, Islam MS (2013) Defect chemistry and lithium-ion migration in polymorphs of the cathode material Li2MnSiO4. J Mater Chem A 1:4207–4214.  https://doi.org/10.1039/C3TA00111C Google Scholar
  57. Fuchs B, Kemmler-Sack S (1994) Synthesis of LiMnO2 and LiFeO2 in molten Li halides. Solid State Ionics 68:279–285.  https://doi.org/10.1016/0167-2738(94)90186-4 Google Scholar
  58. Furuta N, Nishimura S-i, Barpanda P, Yamada A (2012) Fe3+/Fe2+ redox couple approaching 4 V in Li2–x(Fe1–yMny)P2O7 pyrophosphate cathodes. Chem Mater 24:1055–1061.  https://doi.org/10.1021/cm2032465 Google Scholar
  59. Gent WE et al (2017) Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides. Nat Commun 8:2091.  https://doi.org/10.1038/s41467-017-02041-x Google Scholar
  60. Gong Z, Yang Y (2011) Recent advances in the research of polyanion-type cathode materials for Li-ion batteries. Energy Environ Sci 4:3223–3242.  https://doi.org/10.1039/C0EE00713G Google Scholar
  61. Gonzalo E, Han MH, Lopez del Amo JM, Acebedo B, Casas-Cabanas M, Rojo T (2014) Synthesis and characterization of pure P2- and O3-Na2/3Fe2/3Mn1/3O2 as cathode materials for Na ion batteries. J Mater Chem A 2:18523–18530.  https://doi.org/10.1039/C4TA03991B Google Scholar
  62. Gu M et al (2013) Formation of the spinel phase in the layered composite cathode used in Li-Ion batteries. ACS Nano 7:760–767.  https://doi.org/10.1021/nn305065u Google Scholar
  63. Gummow RJ, Dekock A, Thackeray MM (1994) Improved capacity retention in rechargeable 4v lithium lithium manganese oxide (spinel) cells. Solid State Ionics 69:59–67.  https://doi.org/10.1016/0167-2738(94)90450-2 Google Scholar
  64. Guo H, Wu C, Xie J, Zhang S, Cao G, Zhao X (2014a) Controllable synthesis of high-performance LiMnPO4 nanocrystals by a facile one-spot solvothermal process. J Mater Chem A 2:10581–10588.  https://doi.org/10.1039/C4TA01365D Google Scholar
  65. Guo S et al (2014b) A high-capacity, low-cost layered sodium manganese oxide material as cathode for sodium-ion batteries. ChemSusChem 7:2115–2119.  https://doi.org/10.1002/cssc.201402138 Google Scholar
  66. Han MH, Gonzalo E, Casas-Cabanas M, Rojo T (2014) Structural evolution and electrochemistry of monoclinic NaNiO2 upon the first cycling process. J Power Sources 258:266–271.  https://doi.org/10.1016/j.jpowsour.2014.02.048 Google Scholar
  67. Han MH, Acebedo B, Gonzalo E, Fontecoba PS, Clarke S, Saurel D, Rojo T (2015) Synthesis and Electrochemistry Study of P2- and O3-phase Na2/3Fe1/2Mn1/2O2. Electrochim Acta 182:1029–1036.  https://doi.org/10.1016/j.electacta.2015.10.003 Google Scholar
  68. Hasa I, Buchholz D, Passerini S, Scrosati B, Hassoun J (2014) High Performance Na0.5[Ni0.23Fe0.13Mn0.63]O2 Cathode for Sodium-Ion Batteries. Adv Energy Mater 4:1400083.  https://doi.org/10.1002/aenm.201400083 Google Scholar
  69. Hassanzadeh N, Sadrnezhaad SK, Chen G (2016a) Ball mill assisted synthesis of Na3MnCO3PO4 nanoparticles anchored on reduced graphene oxide for sodium ion battery cathodes. Electrochim Acta 220:683–689.  https://doi.org/10.1016/j.electacta.2016.10.160 Google Scholar
  70. Hassanzadeh N, Sadrnezhaad SK, Chen G (2016b) In-situ hydrothermal synthesis of Na3MnCO3PO4/rGO hybrid as a cathode for Na-ion battery. Electrochim Acta 208:188–194.  https://doi.org/10.1016/j.electacta.2016.05.028 Google Scholar
  71. Hautier G, Jain A, Chen H, Moore C, Ong SP, Ceder G (2011) Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations. J Mater Chem 21:17147–17153.  https://doi.org/10.1039/C1JM12216A Google Scholar
  72. He G, Manthiram A (2014) Nanostructured Li2MnSiO4/C cathodes with hierarchical macro-/mesoporosity for lithium-ion batteries. Adv Funct Mater 24:5277–5283.  https://doi.org/10.1002/adfm.201400610 Google Scholar
  73. He Y, Li R, Ding X, Jiang L, Wei M (2010) Hydrothermal synthesis and electrochemical properties of orthorhombic LiMnO2 nanoplates. J Alloys Compd 492:601–604.  https://doi.org/10.1016/j.jallcom.2009.11.191 Google Scholar
  74. He X et al (2016) Durable high-rate capability Na0.44MnO2 cathode material for sodium-ion batteries. Nano Energy 27:602–610.  https://doi.org/10.1016/j.nanoen.2016.07.021 Google Scholar
  75. Hirayama M, Tomita H, Kubota K, Kanno R (2011) Structure and electrode reactions of layered rocksalt LiFeO2 nanoparticles for lithium battery cathode. J Power Sources 196:6809–6814.  https://doi.org/10.1016/j.jpowsour.2010.10.009 Google Scholar
  76. Hong Y, Tang Z, Wang S, Quan W, Zhang Z (2015) High-performance LiMnPO4 nanorods synthesized via a facile EG-assisted solvothermal approach. J Mater Chem A 3:10267–10274.  https://doi.org/10.1039/C5TA01218J Google Scholar
  77. Hu J et al (2017) Tuning Li-Ion diffusion in α-LiMn1–xFexPO4 nanocrystals by antisite defects and embedded β-phase for advanced Li-Ion batteries. Nano Lett 17:4934–4940.  https://doi.org/10.1021/acs.nanolett.7b01978 Google Scholar
  78. Huang W et al (2014) Detailed investigation of Na2.24FePO4CO3 as a cathode material for Na-ion batteries. Sci Rep 4:4188.  https://doi.org/10.1038/srep04188 https://www.nature.com/articles/srep04188#supplementary-information Google Scholar
  79. Huang W et al (2015a) Self-assembled alluaudite Na2Fe3−xMnx(PO4)3 micro/nanocompounds for sodium-ion battery electrodes: a new insight into their electronic and geometric structure. Chem Eur J 21:851–860.  https://doi.org/10.1002/chem.201403062 Google Scholar
  80. Huang W et al (2015b) A new route toward improved sodium ion batteries: a multifunctional fluffy Na0.67FePO4/CNT nanocactus. Small 11:2170–2176.  https://doi.org/10.1002/smll.201402246 Google Scholar
  81. Hy S, Liu H, Zhang M, Qian D, Hwang B-J, Meng YS (2016) Performance and design considerations for lithium excess layered oxide positive electrode materials for lithium ion batteries. Energy Environ Sci 9:1931–1954.  https://doi.org/10.1039/C5EE03573B Google Scholar
  82. Islam MS, Dominko R, Masquelier C, Sirisopanaporn C, Armstrong AR, Bruce PG (2011) Silicate cathodes for lithium batteries: alternatives to phosphates? J Mater Chem 21:9811–9818.  https://doi.org/10.1039/C1JM10312A Google Scholar
  83. Jang DH, Shin YJ, Oh SM (1996) Dissolution of Spinel Oxides and Capacity Losses in 4 V Li / Li x Mn2 O 4 Cells. J Electrochem Soc 143:2204–2211.  https://doi.org/10.1149/1.1836981 Google Scholar
  84. Jarry A et al (2015) The formation mechanism of fluorescent metal complexes at the LixNi0.5Mn1.5O4−δ/carbonate ester electrolyte interface. J Am Chem Soc 137:3533–3539.  https://doi.org/10.1021/ja5116698 Google Scholar
  85. Jarvis K, Deng Z, Manthiram A, Ferreira P (2012) Understanding the role of lithium content on the structure and capacity of lithium-rich layered oxides by aberration-corrected STEM, D-STEM, and EDS. Microsc Microanal 18:1484–1485.  https://doi.org/10.1017/S1431927612009270 Google Scholar
  86. Jiang Y et al (2016) Prussian Blue@C composite as an ultrahigh-rate and long-life sodium-ion battery cathode. Adv Funct Mater 26:5315–5321.  https://doi.org/10.1002/adfm.201600747 Google Scholar
  87. Jin Y-C, Lin C-Y, Duh J-G (2012) Improving rate capability of high potential LiNi0.5Mn1.5O4-x cathode materials via increasing oxygen non-stoichiometries. Electrochim Acta 69:45–50.  https://doi.org/10.1016/j.electacta.2012.02.022 Google Scholar
  88. Kang B, Ceder G (2009) Battery materials for ultrafast charging and discharging. Nature 458:190–193.  https://doi.org/10.1038/nature07853 Google Scholar
  89. Kang K, Meng YS, Bréger J, Grey CP, Ceder G (2006) Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311:977–980.  https://doi.org/10.1126/science.1122152 Google Scholar
  90. Kawabe Y et al (2011) Synthesis and electrode performance of carbon coated Na2FePO4F for rechargeable Na batteries. Electrochem Commun 13:1225–1228.  https://doi.org/10.1016/j.elecom.2011.08.038 Google Scholar
  91. Kawai H, Nagata M, Tukamoto H, Westa AR (1998) A new lithium cathode LiCoMnO4: toward practical 5 V lithium batteries. Electrochem Solid-State Lett 1:212–214.  https://doi.org/10.1149/1.1390688 Google Scholar
  92. Kikkawa S, Miyazaki S, Koizumi M (1985) Sodium deintercalation from α-NaFeO2. Mater Res Bull 20:373–377.  https://doi.org/10.1016/0025-5408(85)90003-0 Google Scholar
  93. Kim JH, Myung ST, Yoon CS, Kang SG, Sun YK (2004) Comparative study of LiNi0.5Mn1.5O4-delta and LiNi0.5Mn1.5O4 cathodes having two crystallographic structures: Fd(3)over-barm and P4(3)32. Chem Mater 16:906–914.  https://doi.org/10.1021/cm035050s Google Scholar
  94. Kim JC, Moore CJ, Kang B, Hautier G, Jain A, Ceder G (2011) Synthesis and electrochemical properties of monoclinic LiMnBO3 as a Li intercalation material. J Electrochem Soc 158:A309–A315.  https://doi.org/10.1149/1.3536532 Google Scholar
  95. Kim D, Lee E, Slater M, Lu W, Rood S, Johnson CS (2012a) Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery application. Electrochem Commun 18:66–69.  https://doi.org/10.1016/j.elecom.2012.02.020 Google Scholar
  96. Kim H et al (2012b) New iron-based mixed-polyanion cathodes for lithium and sodium rechargeable batteries: combined first principles calculations and experimental study. J Am Chem Soc 134:10369–10372.  https://doi.org/10.1021/ja3038646 Google Scholar
  97. Kim H et al (2013a) Understanding the electrochemical mechanism of the new iron-based mixed-phosphate Na4Fe3(PO4)2(P2O7) in a Na rechargeable battery. Chem Mater 25:3614–3622.  https://doi.org/10.1021/cm4013816 Google Scholar
  98. Kim H et al (2013b) Na2FeP2O7 as a promising iron-based pyrophosphate cathode for sodium rechargeable batteries: a combined experimental and theoretical study. Adv Funct Mater 23:1147–1155.  https://doi.org/10.1002/adfm.201201589 Google Scholar
  99. Kim Y, Ha K-H, Oh SM, Lee KT (2014) High-capacity anode materials for sodium-ion batteries. Chem Eur J 20:11980–11992.  https://doi.org/10.1002/chem.201402511 Google Scholar
  100. Kim H et al (2015a) Anomalous Jahn-Teller behavior in a manganese-based mixed-phosphate cathode for sodium ion batteries. Energy Environ Sci 8:3325–3335.  https://doi.org/10.1039/C5EE01876E Google Scholar
  101. Kim J et al (2015b) Unexpected discovery of low-cost maricite NaFePO4 as a high-performance electrode for Na-ion batteries. Energy Environ Sci 8:540–545.  https://doi.org/10.1039/C4EE03215B Google Scholar
  102. Kim JC, Seo D-H, Chen H, Ceder G (2015c) The effect of antisite disorder and particle size on Li intercalation kinetics in monoclinic LiMnBO3. Adv Energy Mater 5:1401916.  https://doi.org/10.1002/aenm.201401916 Google Scholar
  103. Kim H et al (2016a) Highly stable iron- and manganese-based cathodes for long-lasting sodium rechargeable batteries. Chem Mater 28:7241–7249.  https://doi.org/10.1021/acs.chemmater.6b01766 Google Scholar
  104. Kim M-S et al (2016b) Synthesis of reduced graphene oxide-modified LiMn0.75Fe0.25PO4 microspheres by salt-assisted spray drying for high-performance lithium-ion batteries. Sci Rep 6:26686.  https://doi.org/10.1038/srep26686 https://www.nature.com/articles/srep26686#supplementary-information Google Scholar
  105. Ko JS et al (2017) High-rate capability of Na2FePO4F nanoparticles by enhancing surface carbon functionality for Na-ion batteries. J Mater Chem A 5:18707–18715.  https://doi.org/10.1039/C7TA05680J Google Scholar
  106. Koga H et al (2012) Li1.20Mn0.54Co0.13Ni0.13O2 with different particle sizes as attractive positive electrode materials for lithium-ion batteries: insights into their structure. J Phys Chem C 116:13497–13506.  https://doi.org/10.1021/jp301879x Google Scholar
  107. Kokalj A, Dominko R, Mali G, Meden A, Gaberscek M, Jamnik J (2007) Beyond one-electron reaction in Li cathode materials: designing Li2MnxFe1-xSiO4. Chem Mater 19:3633–3640.  https://doi.org/10.1021/cm063011l Google Scholar
  108. Komaba S, Takei C, Nakayama T, Ogata A, Yabuuchi N (2010) Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2. Electrochem Commun 12:355–358.  https://doi.org/10.1016/j.elecom.2009.12.033 Google Scholar
  109. Kumakura S, Tahara Y, Kubota K, Chihara K, Komaba S (2016) Sodium and manganese stoichiometry of P2-Type Na2/3MnO2. Angew Chem Int Ed 55:12760–12763.  https://doi.org/10.1002/anie.201606415 Google Scholar
  110. Kumakura S, Tahara Y, Sato S, Kubota K, Komaba S (2017) P′2-Na2/3Mn0.9Me0.1O2 (Me = Mg, Ti, Co, Ni, Cu, and Zn): correlation between orthorhombic distortion and electrochemical property. Chem Mater 29:8958–8962.  https://doi.org/10.1021/acs.chemmater.7b02772 Google Scholar
  111. Kwon M-S, Lim SG, Park Y, Lee S-M, Chung KY, Shin TJ, Lee KT (2017) P2 Orthorhombic Na0.7[Mn1–xLix]O2+y as cathode materials for Na-Ion batteries. ACS Appl Mater Interfaces 9:14758–14768.  https://doi.org/10.1021/acsami.7b00058 Google Scholar
  112. Larcher D, Tarascon JM (2015) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7:19–29.  https://doi.org/10.1038/nchem.2085 Google Scholar
  113. Law M, Ramar V, Balaya P (2015) Synthesis, characterisation and enhanced electrochemical performance of nanostructured Na2FePO4F for sodium batteries. RSC Adv 5:50155–50164.  https://doi.org/10.1039/C5RA07583A Google Scholar
  114. Lee KT, Ramesh TN, Nan F, Botton G, Nazar LF (2011) Topochemical synthesis of sodium metal phosphate olivines for sodium-ion batteries. Chem Mater 23:3593–3600.  https://doi.org/10.1021/cm200450y Google Scholar
  115. Lee H-W, Wang RY, Pasta M, Woo Lee S, Liu N, Cui Y (2014) Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries. Nat Commun 5:5280.  https://doi.org/10.1038/ncomms6280 https://www.nature.com/articles/ncomms6280#supplementary-information Google Scholar
  116. Lee E, Brown DE, Alp EE, Ren Y, Lu J, Woo J-J, Johnson CS (2015) New insights into the performance degradation of Fe-Based layered oxides in sodium-ion batteries: instability of Fe3+/Fe4+ redox in α-NaFeO2. Chem Mater 27:6755–6764.  https://doi.org/10.1021/acs.chemmater.5b02918 Google Scholar
  117. Lee M-J, Lho E, Bai P, Chae S, Li J, Cho J (2017) Low-temperature carbon coating of nanosized Li1.015Al0.06Mn1.925O4 and high-density electrode for high-power Li-Ion batteries. Nano Lett 17:3744–3751.  https://doi.org/10.1021/acs.nanolett.7b01076 Google Scholar
  118. Legagneur V et al (2001) LiMBO3 (M=Mn, Fe, Co):: synthesis, crystal structure and lithium deinsertion/insertion properties. Solid State Ionics 139:37–46.  https://doi.org/10.1016/S0167-2738(00)00813-4 Google Scholar
  119. Lei Y, Li X, Liu L, Ceder G (2014) Synthesis and stoichiometry of different layered sodium cobalt oxides. Chem Mater 26:5288–5296.  https://doi.org/10.1021/cm5021788 Google Scholar
  120. Li G, Azuma H, Tohda M (2002) LiMnPO4 as the cathode for lithium batteries. Electrochem Solid-State Lett 5:A135–A137.  https://doi.org/10.1149/1.1475195 Google Scholar
  121. Li J, Li J, Luo J, Wang L, He X (2011) Recent advances in the LiFeO2-based materials for Li-ion batteries. Int J Electrochem Sci 6:1550–1561Google Scholar
  122. Li BZ, Wang Y, Xue L, Li XP, Li WS (2013) Acetylene black-embedded LiMn0.8Fe0.2PO4/C composite as cathode for lithium ion battery. J Power Sources 232:12–16.  https://doi.org/10.1016/j.jpowsour.2013.01.019 Google Scholar
  123. Li C, Miao X, Chu W, Wu P, Tong DG (2015a) Hollow amorphous NaFePO4 nanospheres as a high-capacity and high-rate cathode for sodium-ion batteries. J Mater Chem A 3:8265–8271.  https://doi.org/10.1039/C5TA01191D Google Scholar
  124. Li J, Ma C, Chi M, Liang C, Dudney NJ (2015b) Solid Electrolyte: the Key for High-Voltage Lithium Batteries. Adv Energy Mater 5:1401408.  https://doi.org/10.1002/aenm.201401408 Google Scholar
  125. Li Y et al (2015c) Air-Stable Copper-Based P2-Na7/9Cu2/9Fe1/9Mn2/3O2 as a New Positive Electrode Material for Sodium-Ion Batteries. Adv Sci 2:1500031.  https://doi.org/10.1002/advs.201500031 Google Scholar
  126. Li D et al (2016) Soft-template construction of three-dimensionally ordered inverse opal structure from Li2FeSiO4/C composite nanofibers for high-rate lithium-ion batteries. Nanoscale 8:12202–12214.  https://doi.org/10.1039/C5NR07783D Google Scholar
  127. Lin X, Hou X, Wu X, Wang S, Gao M, Yang Y (2014) Exploiting Na2MnPO4F as a high-capacity and well-reversible cathode material for Na-ion batteries. RSC Adv 4:40985–40993.  https://doi.org/10.1039/C4RA05336B Google Scholar
  128. Liu Q, Mao D, Chang C, Huang F (2007) Phase conversion and morphology evolution during hydrothermal preparation of orthorhombic LiMnO2 nanorods for lithium ion battery application. J Power Sources 173:538–544.  https://doi.org/10.1016/j.jpowsour.2007.03.077 Google Scholar
  129. Liu D et al (2012a) Synthesis of pure phase disordered LiMn1.45Cr0.1Ni0.45O4 by a post-annealing method. J Power Sources 217:400–406.  https://doi.org/10.1016/j.jpowsour.2012.06.063 Google Scholar
  130. Liu Y et al (2012b) Porous amorphous FePO4 nanoparticles connected by single-wall carbon nanotubes for sodium ion battery cathodes. Nano Lett 12:5664–5668.  https://doi.org/10.1021/nl302819f Google Scholar
  131. Liu X, Wang X, Iyo A, Yu H, Li D, Zhou H (2014) High stable post-spinel NaMn2O4 cathode of sodium ion battery. J Mater Chem A 2:14822–14826.  https://doi.org/10.1039/C4TA03349C Google Scholar
  132. Liu L et al (2015a) High-Performance P2-Type Na2/3(Mn1/2Fe1/4Co1/4)O2 Cathode Material with Superior Rate Capability for Na-Ion Batteries. Adv Energy Mater 5:1500944.  https://doi.org/10.1002/aenm.201500944 Google Scholar
  133. Liu Y, Xu S, Zhang S, Zhang J, Fan J, Zhou Y (2015b) Direct growth of FePO4/reduced graphene oxide nanosheet composites for the sodium-ion battery. J Mater Chem A 3:5501–5508.  https://doi.org/10.1039/C5TA00199D Google Scholar
  134. Liu C, Neale ZG, Cao G (2016a) Understanding electrochemical potentials of cathode materials in rechargeable batteries. Mater Today 19:109–123.  https://doi.org/10.1016/j.mattod.2015.10.009 Google Scholar
  135. Liu H, Ji P, Han X (2016b) Rheological phase synthesis of nanosized α-LiFeO2 with higher crystallinity degree for cathode material of lithium-ion batteries. Mater Chem Phys 183:152–157.  https://doi.org/10.1016/j.matchemphys.2016.08.013 Google Scholar
  136. Liu Q et al (2017a) Multiangular rod-shaped Na0.44MnO2 as cathode materials with high rate and long life for sodium-ion batteries. ACS Appl Mater Interfaces 9:3644–3652.  https://doi.org/10.1021/acsami.6b13830 Google Scholar
  137. Liu Y, Zhou Y, Zhang J, Xia Y, Chen T, Zhang S (2017b) Monoclinic phase Na3Fe2(PO4)3: synthesis, structure, and electrochemical performance as cathode material in sodium-ion batteries. ACS Sustain Chem Eng 5:1306–1314.  https://doi.org/10.1021/acssuschemeng.6b01536 Google Scholar
  138. Lu J, Yamada A (2016) Ionic and electronic transport in alluaudite Na2+2xFe2−x(SO4)3. ChemElectroChem 3:902–905.  https://doi.org/10.1002/celc.201500535 Google Scholar
  139. Lu Y, Wang L, Cheng J, Goodenough JB (2012) Prussian blue: a new framework of electrode materials for sodium batteries. Chem Commun 48:6544–6546.  https://doi.org/10.1039/C2CC31777J Google Scholar
  140. Lu J, Chen Z, Ma Z, Pan F, Curtiss LA, Amine K (2016) The role of nanotechnology in the development of battery materials for electric vehicles. Nat Nanotechnol 11:1031.  https://doi.org/10.1038/nnano.2016.207 Google Scholar
  141. Luo C, Langrock A, Fan X, Liang Y, Wang C (2017) P2-type transition metal oxides for high performance Na-ion battery cathodes. J Mater Chem A 5:18214–18220.  https://doi.org/10.1039/C7TA04515H Google Scholar
  142. Ma X, Kang B, Ceder G (2010) High rate micron-sized ordered LiNi0.5Mn1.5O4. J Electrochem Soc 157:A925–A931.  https://doi.org/10.1149/1.3439678 Google Scholar
  143. Ma X, Chen H, Ceder G (2011) Electrochemical properties of monoclinic NaMnO2. J Electrochem Soc 158:A1307–A1312.  https://doi.org/10.1149/2.035112jes Google Scholar
  144. MacNeil DD, Lu Z, Chen Z, Dahn JR (2002) A comparison of the electrode/electrolyte reaction at elevated temperatures for various Li-ion battery cathodes. J Power Sources 108:8–14.  https://doi.org/10.1016/S0378-7753(01)01013-8 Google Scholar
  145. Mahmood N, Hou Y (2014) Electrode nanostructures in lithium-based Batteries. Adv Sci 1:1400012.  https://doi.org/10.1002/advs.201400012 Google Scholar
  146. Manthiram A, Knight JC, Myung S-T, Oh S-M, Sun Y-K (2016) Nickel-Rich and lithium-rich layered oxide cathodes: progress and perspectives. Adv Energy Mater 6:1501010.  https://doi.org/10.1002/aenm.201501010 Google Scholar
  147. Martha SK et al (2009a) LiMn0.8Fe0.2PO4: an advanced cathode material for rechargeable lithium batteries. Angew Chem Int Ed 48:8559–8563.  https://doi.org/10.1002/anie.200903587 Google Scholar
  148. Martha SK et al (2009b) LiMnPO4 as an advanced cathode material for rechargeable lithium batteries. J Electrochem Soc 156:A541–A552.  https://doi.org/10.1149/1.3125765 Google Scholar
  149. Masquelier C, Croguennec L (2013) Polyanionic (Phosphates, Silicates, Sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. Chem Rev 113:6552–6591Google Scholar
  150. Matsumura T, Kanno R, Inaba Y, Kawamoto Y, Takano M (2002) Synthesis, structure, and electrochemical properties of a new cathode material, LiFeO2 , with a tunnel structure. J Electrochem Soc 149:A1509–A1513.  https://doi.org/10.1149/1.1516769 Google Scholar
  151. Meethong N, Kao Y-H, Tang M, Huang H-Y, Carter WC, Chiang Y-M (2008) Electrochemically induced phase transformation in nanoscale olivines Li1−xMPO4 (M = Fe, Mn). Chem Mater 20:6189–6198.  https://doi.org/10.1021/cm801722f Google Scholar
  152. Meng Y, Yu T, Zhang S, Deng C (2016) Top-down synthesis of muscle-inspired alluaudite Na2+2xFe2-x(SO4)3/SWNT spindle as a high-rate and high-potential cathode for sodium-ion batteries. J Mater Chem A 4:1624–1631.  https://doi.org/10.1039/C5TA07696J Google Scholar
  153. Mizushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) Lixcoo2 (oless-thanxless-than-or-equal-to1)—a new cathode material for batteries of high-energy density. Mater Res Bull 15:783–789.  https://doi.org/10.1016/0025-5408(80)90012-4 Google Scholar
  154. Mohanty D et al (2013) Structural transformation of a lithium-rich Li1.2Co0.1Mn0.55Ni0.15O2 cathode during high voltage cycling resolved by in situ X-ray diffraction. J Power Sources 229:239–248.  https://doi.org/10.1016/j.jpowsour.2012.11.144 Google Scholar
  155. Morales J, Santos-Peña J (2007) Highly electroactive nanosized α-LiFeO2. Electrochem Commun 9:2116–2120.  https://doi.org/10.1016/j.elecom.2007.06.013 Google Scholar
  156. Moreau P, Guyomard D, Gaubicher J, Boucher F (2010) Structure and stability of sodium intercalated phases in olivine FePO4. Chem Mater 22:4126–4128.  https://doi.org/10.1021/cm101377h Google Scholar
  157. Mortemard de Boisse B, Carlier D, Guignard M, Bourgeois L, Delmas C (2014) P2-NaxMn1/2Fe1/2O2 phase used as positive electrode in na batteries: structural changes induced by the electrochemical (De)intercalation process. Inorg Chem 53:11197–11205.  https://doi.org/10.1021/ic5017802 Google Scholar
  158. Muraliganth T, Stroukoff KR, Manthiram A (2010) Microwave-solvothermal synthesis of nanostructured Li2MSiO4/C (M = Mn and Fe) cathodes for lithium-ion batteries. Chem Mater 22:5754–5761.  https://doi.org/10.1021/cm102058n Google Scholar
  159. Myung S-T, Amine K, Sun Y-K (2015) Nanostructured cathode materials for rechargeable lithium batteries. J Power Sources 283:219–236.  https://doi.org/10.1016/j.jpowsour.2015.02.119 Google Scholar
  160. Naoaki Y, Shinichi K (2014) Recent research progress on iron- and manganese-based positive electrode materials for rechargeable sodium batteries. Sci Technol Adv Mater 15:043501Google Scholar
  161. Naoi K et al (2016) Ultrafast charge-discharge characteristics of a nanosized core-shell structured LiFePO4 material for hybrid supercapacitor applications. Energy Environ Sci 9:2143–2151.  https://doi.org/10.1039/C6EE00829A Google Scholar
  162. Ni J, Jiang Y, Bi X, Li L, Lu J (2017) Lithium iron orthosilicate cathode: progress and perspectives. ACS Energy Lett 2:1771–1781.  https://doi.org/10.1021/acsenergylett.7b00452 Google Scholar
  163. Nie ZX et al (2010) First principles study of Jahn–Teller effects in LixMnPO4. Solid State Commun 150:40–44.  https://doi.org/10.1016/j.ssc.2009.10.010 Google Scholar
  164. Nishimura S-i, Nakamura M, Natsui R, Yamada A (2010) New lithium iron pyrophosphate as 3.5 V class cathode material for lithium ion battery. J Am Chem Soc 132:13596–13597.  https://doi.org/10.1021/ja106297a Google Scholar
  165. Nitta Y, Okamura K, Haraguchi K, Kobayashi S, Ohata A (1995) Crystal structure study of LiNi1−xMnxO2. J Power Sources 54:511–515.  https://doi.org/10.1016/0378-7753(94)02137-R Google Scholar
  166. Nitta N, Wu F, Lee JT, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18:252–264.  https://doi.org/10.1016/j.mattod.2014.10.040 Google Scholar
  167. Norberg NS, Kostecki R (2012) The degradation mechanism of a composite LiMnPO4 cathode. J Electrochem Soc 159:A1431–A1434.  https://doi.org/10.1149/2.018209jes Google Scholar
  168. Nytén A, Abouimrane A, Armand M, Gustafsson T, Thomas JO (2005) Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material. Electrochem Commun 7:156–160.  https://doi.org/10.1016/j.elecom.2004.11.008 Google Scholar
  169. Oh S-M, Oh S-W, Yoon C-S, Scrosati B, Amine K, Sun Y-K (2010) High-performance carbon-LiMnPO4 nanocomposite cathode for lithium batteries. Adv Funct Mater 20:3260–3265.  https://doi.org/10.1002/adfm.201000469 Google Scholar
  170. Oh S-M, Myung S-T, Hassoun J, Scrosati B, Sun Y-K (2012) Reversible NaFePO4 electrode for sodium secondary batteries. Electrochem Commun 22:149–152.  https://doi.org/10.1016/j.elecom.2012.06.014 Google Scholar
  171. Ohzuku T, Ueda A, Nagayama M (1993) Electrochemistry and structural chemistry of LiNiO2 (R3̅m) for 4 volt secondary lithium cells. J Electrochem Soc 140:1862–1870.  https://doi.org/10.1149/1.2220730 Google Scholar
  172. Ohzuku T, Takeda S, Iwanaga M (1999) Solid-state redox potentials for Li [Me1/2Mn3/2] O4 (Me: 3d-transition metal) having spinel-framework structures: a series of 5 volt materials for advanced lithium-ion batteries. J Power Sources 81:90–94Google Scholar
  173. Okada S, Takahashi Y, Kiyabu T, Doi T, Yamaki J-I, Nishida T (2006) Layered transition metal oxides as cathodes for sodium secondary battery meeting abstracts MA2006-02:201Google Scholar
  174. Ong SP, Chevrier VL, Ceder G (2011) Comparison of small polaron migration and phase separation in olivine LiMnPO${}_{4}$ and LiFePO${}_{4}$ using hybrid density functional theory. Phys Rev B 83:075112Google Scholar
  175. Oyama G, Pecher O, Griffith KJ, Nishimura S-i, Pigliapochi R, Grey CP, Yamada A (2016) Sodium intercalation mechanism of 3.8 V class alluaudite sodium iron sulfate. Chem Mater 28:5321–5328.  https://doi.org/10.1021/acs.chemmater.6b01091 Google Scholar
  176. Palomares V, Serras P, Villaluenga I, Hueso KB, Carretero-Gonzalez J, Rojo T (2012) Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci 5:5884–5901.  https://doi.org/10.1039/c2ee02781j Google Scholar
  177. Paolella A et al (2014) Etched colloidal LiFePO4 nanoplatelets toward high-rate capable Li-Ion battery electrodes. Nano Lett 14:6828–6835.  https://doi.org/10.1021/nl504093w Google Scholar
  178. Parant J-P, Olazcuaga R, Devalette M, Fouassier C, Hagenmuller P (1971) Sur quelques nouvelles phases de formule NaxMnO2 (x ⩽ 1). J Solid State Chem 3:1–11.  https://doi.org/10.1016/0022-4596(71)90001-6 Google Scholar
  179. Park CS et al (2013) Anomalous manganese activation of a pyrophosphate cathode in sodium ion batteries: a combined experimental and theoretical study. J Am Chem Soc 135:2787–2792.  https://doi.org/10.1021/ja312044k Google Scholar
  180. Paulsen JM, Dahn JR (1999) Studies of the layered manganese bronzes, Na2/3[Mn1−xMx]O2 with M=Co, Ni, Li, and Li2/3[Mn1−xMx]O2 prepared by ion-exchange. Solid State Ionics 126:3–24.  https://doi.org/10.1016/S0167-2738(99)00147-2 Google Scholar
  181. Pei Y et al (2016) Chelate-induced formation of Li2MnSiO4 nanorods as a high capacity cathode material for Li-ion batteries. J Mater Chem A 4:9447–9454.  https://doi.org/10.1039/C6TA01269H Google Scholar
  182. Pivko M, Bele M, Tchernychova E, Logar NZ, Dominko R, Gaberscek M (2012) Synthesis of nanometric LiMnPO4 via a two-step technique. Chem Mater 24:1041–1047.  https://doi.org/10.1021/cm203095d Google Scholar
  183. Qin Z, Zhou X, Xia Y, Tang C, Liu Z (2012) Morphology controlled synthesis and modification of high-performance LiMnPO4 cathode materials for Li-ion batteries. J Mater Chem 22:21144–21153.  https://doi.org/10.1039/C2JM30821E Google Scholar
  184. Rahman MM, Wang J-Z, Hassan MF, Chou S, Chen Z, Liu HK (2011) Nanocrystalline porous α-LiFeO2-C composite-an environmentally friendly cathode for the lithium-ion battery. Energ Environ Sci 4:952–957.  https://doi.org/10.1039/C0EE00527D Google Scholar
  185. Ramar V, Balaya P (2016) The effect of polymorphism on the lithium storage performance of Li2MnSiO4. J Power Sources 306:552–558.  https://doi.org/10.1016/j.jpowsour.2015.12.033 Google Scholar
  186. Rangappa D, Murukanahally KD, Tomai T, Unemoto A, Honma I (2012) Ultrathin nanosheets of Li2MSiO4 (M = Fe, Mn) as high-capacity Li-Ion battery electrode. Nano Lett 12:1146–1151.  https://doi.org/10.1021/nl202681b Google Scholar
  187. Ravnsbæk DB et al (2014) Extended solid solutions and coherent transformations in nanoscale olivine cathodes. Nano Lett 14:1484–1491.  https://doi.org/10.1021/nl404679t Google Scholar
  188. Ravnsbæk DB et al (2016) Engineering the transformation strain in LiMnyFe1–yPO4 olivines for ultrahigh rate battery cathodes. Nano Lett 16:2375–2380.  https://doi.org/10.1021/acs.nanolett.5b05146 Google Scholar
  189. Rossen E, Jones CDW, Dahn JR (1992) Structure and electrochemistry of LixMnyNi1−yO2. Solid State Ionics 57:311–318.  https://doi.org/10.1016/0167-2738(92)90164-K Google Scholar
  190. Rossouw MH, Liles DC, Thackeray MM (1993) Synthesis and structural characterization of a novel layered lithium manganese oxide, Li0.36Mn0.91O2, and its lithiated derivative, Li1.09Mn0.91O2. J Solid State Chem 104:464–466.  https://doi.org/10.1006/jssc.1993.1182 Google Scholar
  191. Sakurai Y, Arai H, Okada S, Yamaki J-i (1997) Low temperature synthesis and electrochemical characteristics of LiFeO2 cathodes. J Power Sources 68:711–715.  https://doi.org/10.1016/S0378-7753(96)02579-7 Google Scholar
  192. Sauvage F, Laffont L, Tarascon JM, Baudrin E (2007) Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2. Inorg Chem 46:3289–3294.  https://doi.org/10.1021/ic0700250 Google Scholar
  193. Seo D-H, Park Y-U, Kim S-W, Park I, Shakoor RA, Kang K (2011) First-principles study on lithium metal borate cathodes for lithium rechargeable batteries. Phys Rev B 83:205127Google Scholar
  194. Shaju KM, Subba Rao GV, Chowdari BVR (2002) Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries. Electrochim Acta 48:145–151.  https://doi.org/10.1016/S0013-4686(02)00593-5 Google Scholar
  195. Sharma N et al (2015) Rate dependent performance related to crystal structure evolution of Na0.67Mn0.8Mg0.2O2 in a sodium-ion battery. Chem Mater 27:6976–6986.  https://doi.org/10.1021/acs.chemmater.5b02142 Google Scholar
  196. Sharma N, Bahri OKA, Han MH, Gonzalo E, Pramudita JC, Rojo T (2016) Comparison of the structural evolution of the O3 and P2 phases of Na2/3Fe2/3Mn1/3O2 during electrochemical cycling. Electrochim Acta 203:189–197.  https://doi.org/10.1016/j.electacta.2016.04.008 Google Scholar
  197. Shirane T, Kanno R, Kawamoto Y, Takeda Y, Takano M, Kamiyama T, Izumi F (1995) Structure and physical properties of lithium iron oxide, LiFeO2, synthesized by ionic exchange reaction. Solid State Ionics 79:227–233.  https://doi.org/10.1016/0167-2738(95)00066-F Google Scholar
  198. Shukla AK, Ramasse QM, Ophus C, Duncan H, Hage F, Chen G (2015) Unravelling structural ambiguities in lithium- and manganese-rich transition metal oxides. Nat Commun 6:8711.  https://doi.org/10.1038/ncomms9711 https://www.nature.com/articles/ncomms9711#supplementary-information Google Scholar
  199. Sigala C, Guyomard D, Verbaere A, Piffard Y, Tournoux M (1995) Positive electrode materials with high operating voltage for lithium batteries: LiCryMn2 − yO4 (0 ≤ y ≤ 1). Solid State Ionics 81:167–170.  https://doi.org/10.1016/0167-2738(95)00163-Z Google Scholar
  200. Singh P, Shiva K, Celio H, Goodenough JB (2015) Eldfellite, NaFe(SO4)2: an intercalation cathode host for low-cost Na-ion batteries. Energ Environ Sci 8:3000–3005.  https://doi.org/10.1039/C5EE02274F Google Scholar
  201. Slater MD, Kim D, Lee E, Johnson CS (2013) Sodium-ion batteries. Adv Funct Mater 23:947–958.  https://doi.org/10.1002/adfm.201200691 Google Scholar
  202. Song J et al (2015) Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery. J Am Chem Soc 137:2658–2664.  https://doi.org/10.1021/ja512383b Google Scholar
  203. Song HJ, Kim D-S, Kim J-C, Hong S-H, Kim D-W (2017a) An approach to flexible Na-ion batteries with exceptional rate capability and long lifespan using Na2FeP2O7 nanoparticles on porous carbon cloth. J Mater Chem A 5:5502–5510.  https://doi.org/10.1039/C7TA00727B Google Scholar
  204. Song HJ, Kim K-H, Kim J-C, Hong S-H, Kim D-W (2017b) Superior sodium storage performance of reduced graphene oxide-supported Na3.12Fe2.44(P2O7)2/C nanocomposites. Chem Commun 53:9316–9319.  https://doi.org/10.1039/C7CC01812F Google Scholar
  205. Sun Y, Lu X, Xiao R, Li H, Huang X (2012) Kinetically controlled lithium-staging in delithiated LiFePO4 driven by the Fe center mediated interlayer Li–Li interactions. Chem Mater 24:4693–4703.  https://doi.org/10.1021/cm3028324 Google Scholar
  206. Tabuchi M, Ado K, Sakaebe H, Masquelier C, Kageyama H, Nakamura O (1995) Preparation of AFeO2 (A = Li, Na) by hydrothermal method. Solid State Ionics 79:220–226.  https://doi.org/10.1016/0167-2738(95)00065-E Google Scholar
  207. Tabuchi M, Nabeshima Y, Takeuchi T, Tatsumi K, Imaizumi J, Nitta Y (2010) Fe content effects on electrochemical properties of Fe-substituted Li2MnO3 positive electrode material. J Power Sources 195:834–844.  https://doi.org/10.1016/j.jpowsour.2009.08.059 Google Scholar
  208. Takeda Y, Nakahara K, Nishijima M, Imanishi N, Yamamoto O, Takano M, Kanno R (1994) Sodium deintercalation from sodium iron oxide. Mater Res Bull 29:659–666.  https://doi.org/10.1016/0025-5408(94)90122-8 Google Scholar
  209. Talaie E, Duffort V, Smith HL, Fultz B, Nazar LF (2015) Structure of the high voltage phase of layered P2-Na2/3-z[Mn1/2Fe1/2]O2 and the positive effect of Ni substitution on its stability. Energy Environ Sci 8:2512–2523.  https://doi.org/10.1039/C5EE01365H Google Scholar
  210. Talyosef Y, Markovsky B, Salitra G, Aurbach D, Kim HJ, Choi S (2005) The study of LiNi0.5Mn1.5O4 5-V cathodes for Li-ion batteries. J Power Sources 146:664–669.  https://doi.org/10.1016/j.jpowsour.2005.03.064 Google Scholar
  211. Tao L et al (2014) Preparation, structure and electrochemistry of LiFeBO3: a cathode material for Li-ion batteries. J Mater Chem A 2:2060–2070.  https://doi.org/10.1039/C3TA13021E Google Scholar
  212. Thackeray MM, David WIF, Bruce PG, Goodenough JB (1983) Lithium insertion into manganese spinels. Mater Res Bull 18:461–472.  https://doi.org/10.1016/0025-5408(83)90138-1 Google Scholar
  213. Thackeray MM, Johnson PJ, de Picciotto LA, Bruce PG, Goodenough JB (1984) Electrochemical extraction of lithium from LiMn2O4. Mater Res Bull 19:179–187.  https://doi.org/10.1016/0025-5408(84)90088-6 Google Scholar
  214. Thackeray MM, Kang S-H, Johnson CS, Vaughey JT, Benedek R, Hackney SA (2007) Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J Mater Chem 17:3112–3125.  https://doi.org/10.1039/B702425H Google Scholar
  215. Thackeray MM, Wolverton C, Isaacs ED (2012) Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries. Energ Environ Sci 5:7854–7863.  https://doi.org/10.1039/C2EE21892E Google Scholar
  216. Thorne JS, Dunlap RA, Obrovac MN (2013) Structure and electrochemistry of NaxFexMn1-xO2 (1.0 ≤ x ≤ 0.5) for Na-Ion battery positive electrodes. J Electrochem Soc 160:A361–A367.  https://doi.org/10.1149/2.058302jes Google Scholar
  217. Trad K, Carlier D, Croguennec L, Wattiaux A, Ben Amara M, Delmas C (2010a) NaMnFe2(PO4)3 alluaudite phase: synthesis, structure, and electrochemical properties as positive electrode in lithium and sodium batteries. Chem Mater 22:5554–5562.  https://doi.org/10.1021/cm1015614 Google Scholar
  218. Trad K, Carlier D, Croguennec L, Wattiaux A, Lajmi B, Ben Amara M, Delmas C (2010b) A layered iron(III) phosphate phase, Na3Fe3(PO4)4: synthesis, structure, and electrochemical properties as positive electrode in sodium batteries. J Phys Chem C 114:10034–10044.  https://doi.org/10.1021/jp100751b Google Scholar
  219. Tripathi R, Wood SM, Islam MS, Nazar LF (2013) Na-ion mobility in layered Na2FePO4F and olivine Na[Fe,Mn]PO4. Energy Environ Sci 6:2257–2264.  https://doi.org/10.1039/C3EE40914G Google Scholar
  220. Tsutomu O, Yoshinari M (2001) Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries. Chem Lett 30:642–643.  https://doi.org/10.1246/cl.2001.642 Google Scholar
  221. Wang H et al (2011a) LiMn1−xFexPO4 nanorods grown on graphene sheets for ultrahigh-rate-performance lithium ion batteries. Angew Chem Int Ed 50:7364–7368.  https://doi.org/10.1002/anie.201103163 Google Scholar
  222. Wang L, Li H, Huang X, Baudrin E (2011b) A comparative study of Fd-3m and P4332 “LiNi0.5Mn1.5O4”. Solid State Ionics 193:32–38.  https://doi.org/10.1016/j.ssi.2011.04.007 Google Scholar
  223. Wang L, Lu Y, Liu J, Xu M, Cheng J, Zhang D, Goodenough JB (2013) A superior low-cost cathode for a Na-Ion battery. Angew Chem Int Ed 52:1964–1967.  https://doi.org/10.1002/anie.201206854 Google Scholar
  224. Wang B, Al Abdulla W, Wang D, Zhao XS (2015a) A three-dimensional porous LiFePO4 cathode material modified with a nitrogen-doped graphene aerogel for high-power lithium ion batteries. Energy Environ Sci 8:869–875.  https://doi.org/10.1039/C4EE03825H Google Scholar
  225. Wang X, Kurono R, Nishimura S-i, Okubo M, Yamada A (2015b) Iron–oxalato framework with one-dimensional open channels for electrochemical sodium-ion intercalation. Chem Eur J 21:1096–1101.  https://doi.org/10.1002/chem.201404929 Google Scholar
  226. Wang F, Wu X, Li C, Zhu Y, Fu L, Wu Y, Liu X (2016) Nanostructured positive electrode materials for post-lithium ion batteries. Energy Environ Sci 9:3570–3611.  https://doi.org/10.1039/C6EE02070D Google Scholar
  227. Wang C, Li S, Han Y, Lu Z (2017) Assembly of LiMnPO4 Nanoplates into microclusters as a high-performance cathode in lithium-ion batteries. ACS Appl Mater Interfaces 9:27618–27624.  https://doi.org/10.1021/acsami.7b05868 Google Scholar
  228. Wei S, Mortemard de Boisse B, Oyama G, Nishimura S-i, Yamada A (2016) Synthesis and electrochemistry of Na2.5(Fe1−yMny)1.75(SO4)3 Solid solutions for Na-Ion batteries. ChemElectroChem 3:209–213.  https://doi.org/10.1002/celc.201500455 Google Scholar
  229. Wi S et al (2017a) Synchrotron-based x-ray absorption spectroscopy for the electronic structure of LixMn0.8Fe0.2PO4 mesocrystal in Li+ batteries. Nano Energy 31:495–503.  https://doi.org/10.1016/j.nanoen.2016.11.044 Google Scholar
  230. Wi S et al (2017b) Insights on the delithiation/lithiation reactions of LixMn0.8Fe0.2PO4 mesocrystals in Li+ batteries by in situ techniques. Nano Energy 39:371–379.  https://doi.org/10.1016/j.nanoen.2017.07.016 Google Scholar
  231. Wood SM, Eames C, Kendrick E, Islam MS (2015) Sodium ion diffusion and voltage trends in phosphates Na4M3(PO4)2P2O7 (M = Fe, Mn, Co, Ni) for possible high-rate cathodes. J Phys Chem C 119:15935–15941.  https://doi.org/10.1021/acs.jpcc.5b04648 Google Scholar
  232. Wu X, Zheng J, Gong Z, Yang Y (2011) Sol-gel synthesis and electrochemical properties of fluorophosphates Na2Fe1-xMnxPO4F/C (x = 0, 0.1, 0.3, 0.7, 1) composite as cathode materials for lithium ion battery. J Mater Chem 21:18630–18637.  https://doi.org/10.1039/C1JM13578C Google Scholar
  233. Wu X, Guo J, Wang D, Zhong G, McDonald MJ, Yang Y (2015) P2-type Na0.66Ni0.33–xZnxMn0.67O2 as new high-voltage cathode materials for sodium-ion batteries. J Power Sources 281:18–26.  https://doi.org/10.1016/j.jpowsour.2014.12.083 Google Scholar
  234. Wu X, Zhong G, Yang Y (2016) Sol-gel synthesis of Na4Fe3(PO4)2(P2O7)/C nanocomposite for sodium ion batteries and new insights into microstructural evolution during sodium extraction. J Power Sources 327:666–674.  https://doi.org/10.1016/j.jpowsour.2016.07.061 Google Scholar
  235. Xia Y, Zhou Y, Yoshio M (1997) Capacity fading on cycling of 4 V Li / LiMn2 O 4 Cells. J Electrochem Soc 144:2593–2600.  https://doi.org/10.1149/1.1837870 Google Scholar
  236. Xia H, Lu L, Meng YS, Ceder G (2007) Phase transitions and high-voltage electrochemical behavior of LiCoO2 thin films grown by pulsed laser deposition. J Electrochem Soc 154:A337–A342.  https://doi.org/10.1149/1.2509021 Google Scholar
  237. Xiao X, Wang L, Wang D, He X, Peng Q, Li Y (2009) Hydrothermal synthesis of orthorhombic LiMnO2 nano-particles and LiMnO2 nanorods and comparison of their electrochemical performances. Nano Res 2:923–930.  https://doi.org/10.1007/s12274-009-9094-8 Google Scholar
  238. Xiao J et al (2012) High-performance LiNi0.5Mn1.5O4 spinel controlled by Mn3+concentration and site disorder. Adv Mater 24:2109–2116.  https://doi.org/10.1002/adma.201104767 Google Scholar
  239. Xu M et al (2017a) Tailoring anisotropic Li-Ion transport tunnels on orthogonally arranged Li-rich layered oxide nanoplates toward high-performance Li-Ion batteries. Nano Lett 17:1670–1677.  https://doi.org/10.1021/acs.nanolett.6b04951 Google Scholar
  240. Xu X, Deng S, Wang H, Liu J, Yan H (2017b) Research progress in improving the cycling stability of high-voltage LiNi0.5Mn1.5O4 cathode in lithium-ion battery. Nano-Micro Lett 9:22.  https://doi.org/10.1007/s40820-016-0123-3 Google Scholar
  241. Yabuuchi N, Yoshii K, Myung S-T, Nakai I, Komaba S (2011) Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3−LiCo1/3Ni1/3Mn1/3O2. J Am Chem Soc 133:4404–4419.  https://doi.org/10.1021/ja108588y Google Scholar
  242. Yabuuchi N et al (2012a) P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat Mater 11:512–517 http://www.nature.com/nmat/journal/v11/n6/abs/nmat3309.html#supplementary-information Google Scholar
  243. Yabuuchi N, Yoshida H, Komaba S (2012b) Crystal Structures and Electrode Performance of Alpha-NaFeO<sub>2</sub> for Rechargeable Sodium Batteries. Electrochemistry 80:716–719.  https://doi.org/10.5796/electrochemistry.80.716 Google Scholar
  244. Yabuuchi N, Hara R, Kubota K, Paulsen J, Kumakura S, Komaba S (2014a) A new electrode material for rechargeable sodium batteries: P2-type Na2/3[Mg0.28Mn0.72]O2 with anomalously high reversible capacity. J Mater Chem A 2:16851–16855.  https://doi.org/10.1039/C4TA04351K Google Scholar
  245. Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014b) Research development on sodium-ion batteries. Chem Rev 114:11636–11682.  https://doi.org/10.1021/cr500192f Google Scholar
  246. Yakubovich OV, Karimova OV, Mel'nikov OK (1997) The mixed anionic framework in the structure of Na2{MnF[PO4]}. Acta Crystallogr C 53:395–397.  https://doi.org/10.1107/S0108270196014102 Google Scholar
  247. Yamada A, Kudo Y, Liu K-Y (2001) Reaction mechanism of the olivine-type Li x ( Mn0.6Fe0.4 )  PO 4 ( 0 ⩽ x ⩽ 1 ). J Electrochem Soc 148:A747–A754.  https://doi.org/10.1149/1.1375167 Google Scholar
  248. Yamada A, Iwane N, Harada Y, Nishimura S-i, Koyama Y, Tanaka I (2010) Lithium iron borates as high-capacity battery electrodes. Adv Mater 22:3583–3587.  https://doi.org/10.1002/adma.201001039 Google Scholar
  249. Yan S-Y, Wang C-Y, Gu R-M, Li M-W (2015) Enhanced kinetic behaviors of LiMn0.5Fe0.5PO4/C cathode material by Fe substitution and carbon coating. J Solid State Electrochem 19:2943–2950.  https://doi.org/10.1007/s10008-015-2905-9 Google Scholar
  250. Yang J, Han X, Zhang X, Cheng F, Chen J (2013) Spinel LiNi0.5Mn1.5O4 cathode for rechargeable lithiumion batteries: nano vs micro, ordered phase (P4332) vs disordered phase (Fd $\bar 3$ m). Nano Res.  https://doi.org/10.1007/s12274-013-0343-5
  251. Yang D, Xu J, Liao X-Z, Wang H, He Y-S, Ma Z-F (2015a) Prussian blue without coordinated water as a superior cathode for sodium-ion batteries. Chem Commun 51:8181–8184.  https://doi.org/10.1039/C5CC01180A Google Scholar
  252. Yang J, Hu L, Zheng J, He D, Tian L, Mu S, Pan F (2015b) Li2FeSiO4 nanorods bonded with graphene for high performance batteries. J Mater Chem A 3:9601–9608.  https://doi.org/10.1039/C5TA01529D Google Scholar
  253. Yang W et al (2015c) LiMn0.8Fe0.2PO4/C cathode material synthesized via co-precipitation method with superior high-rate and low-temperature performances for lithium-ion batteries. J Power Sources 275:785–791.  https://doi.org/10.1016/j.jpowsour.2014.11.063 Google Scholar
  254. Yang J et al (2016) Tuning structural stability and lithium-storage properties by d-orbital hybridization substitution in full tetrahedron Li2FeSiO4 nanocrystal. Nano Energy 20:117–125.  https://doi.org/10.1016/j.nanoen.2015.12.004 Google Scholar
  255. Yao W, Sougrati M-T, Hoang K, Hui J, Lightfoot P, Armstrong AR (2017a) Na2Fe(C2O4)F2: a new iron-based polyoxyanion cathode for Li/Na ion batteries. Chem Mater 29:2167–2172.  https://doi.org/10.1021/acs.chemmater.6b04859 Google Scholar
  256. Yao W, Sougrati M-T, Hoang K, Hui J, Lightfoot P, Armstrong AR (2017b) Reinvestigation of Na2Fe2(C2O4)3·2H2O: an iron-based positive electrode for secondary batteries. Chem Mater 29:9095–9101.  https://doi.org/10.1021/acs.chemmater.7b02764 Google Scholar
  257. Ye DL, Ozawa K, Wang B, Hulicova-Jurcakova D, Zou J, Sun CH, Wang LZ (2014a) Capacity-controllable Li-rich cathode materials for lithium-ion batteries. Nano Energy 6:92–102.  https://doi.org/10.1016/j.nanoen.2014.03.013 Google Scholar
  258. Ye DL et al (2014b) Understanding the stepwise capacity increase of high energy low-Co Li-rich cathode materials for lithium ion batteries. J Mater Chem A 2:18767–18774.  https://doi.org/10.1039/c4ta03692a Google Scholar
  259. Ye D, Zeng G, Nogita K, Ozawa K, Hankel M, Searles DJ, Wang L (2015a) Understanding the origin of Li2MnO3 activation in Li-rich cathode materials for lithium-ion batteries. Adv Funct Mater 25:7488–7496.  https://doi.org/10.1002/adfm.201503276 Google Scholar
  260. Ye DL, Sun CH, Chen Y, Ozawa K, Hulicova-Jurcakova D, Zou J, Wang LZ (2015b) Ni-induced stepwise capacity increase in Ni-poor Li-rich cathode materials for high performance lithium ion batteries. Nano Res 8:808–820.  https://doi.org/10.1007/s12274-014-0563-3 Google Scholar
  261. Yi T-F, Xie Y, Ye M-F, Jiang L-J, Zhu R-S, Zhu Y-R (2011) Recent developments in the doping of LiNi0.5Mn1.5O4 cathode material for 5 V lithium-ion batteries. Ionics 17:383–389.  https://doi.org/10.1007/s11581-011-0550-6 Google Scholar
  262. Yi T-F, Mei J, Zhu Y-R (2016) Key strategies for enhancing the cycling stability and rate capacity of LiNi0.5Mn1.5O4 as high-voltage cathode materials for high power lithium-ion batteries. J Power Sources 316:85–105.  https://doi.org/10.1016/j.jpowsour.2016.03.070 Google Scholar
  263. Yoo H, Jo M, Jin B-S, Kim H-S, Cho J (2011) Flexible morphology design of 3D-macroporous LiMnPO4 cathode materials for Li secondary batteries: ball to flake. Adv Energy Mater 1:347–351.  https://doi.org/10.1002/aenm.201000049 Google Scholar
  264. You Y, Wu X-L, Yin Y-X, Guo Y-G (2014) High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries. Energ Environ Sci 7:1643–1647.  https://doi.org/10.1039/C3EE44004D Google Scholar
  265. Yu H, Ishikawa R, So Y-G, Shibata N, Kudo T, Zhou H, Ikuhara Y (2013) Direct atomic-resolution observation of two phases in the Li1.2Mn0.567Ni0.166Co0.067O2 cathode material for lithium-ion batteries. Angew Chem Int Ed 52:5969–5973.  https://doi.org/10.1002/anie.201301236 Google Scholar
  266. Yu T, Lin B, Li Q, Wang X, Qu W, Zhang S, Deng C (2016) First exploration of freestanding and flexible Na2+2xFe2-x(SO4)3@porous carbon nanofiber hybrid films with superior sodium intercalation for sodium ion batteries. PCCP 18:26933–26941.  https://doi.org/10.1039/C6CP04958C Google Scholar
  267. Zaghib K, Trottier J, Hovington P, Brochu F, Guerfi A, Mauger A, Julien CM (2011) Characterization of Na-based phosphate as electrode materials for electrochemical cells. J Power Sources 196:9612–9617.  https://doi.org/10.1016/j.jpowsour.2011.06.061 Google Scholar
  268. Zhang L, Wu HB, Madhavi S, Hng HH, Lou XW (2012) Formation of Fe2O3 microboxes with hierarchical shell structures from metal–organic frameworks and their lithium storage properties. J Am Chem Soc 134:17388–17391.  https://doi.org/10.1021/ja307475c Google Scholar
  269. Zhang X, Cheng F, Yang J, Chen J (2013a) LiNi0.5Mn1.5O4 porous nanorods as high-rate and long-life cathodes for Li-ion batteries. Nano Lett 13:2822–2825.  https://doi.org/10.1021/nl401072x Google Scholar
  270. Zhang X, Cheng F, Yang J, Chen J (2013b) LiNi(0.5)Mn(1.5)O4 porous nanorods as high-rate and long-life cathodes for Li-ion batteries. Nano Lett 13:2822–2825.  https://doi.org/10.1021/nl401072x Google Scholar
  271. Zhang K, Han X, Hu Z, Zhang X, Tao Z, Chen J (2015a) Nanostructured Mn-based oxides for electrochemical energy storage and conversion. Chem Soc Rev 44:699–728.  https://doi.org/10.1039/C4CS00218K Google Scholar
  272. Zhang L, Ni J, Wang W, Guo J, Li L (2015b) 3D porous hierarchical Li2FeSiO4/C for rechargeable lithium batteries. J Mater Chem A 3:11782–11786.  https://doi.org/10.1039/C5TA02433A Google Scholar
  273. Zhang Z et al (2017) First-principles computational studies on layered Na2Mn3O7 as a high-rate cathode material for sodium ion batteries. J Mater Chem A 5:12752–12756.  https://doi.org/10.1039/C7TA02609A Google Scholar
  274. Zhao J, Zhao L, Dimov N, Okada S, Nishida T (2013) Electrochemical and thermal properties of α-NaFeO2 cathode for Na-ion batteries. J Electrochem Soc 160:A3077–A3081.  https://doi.org/10.1149/2.007305jes Google Scholar
  275. Zhao Y, Peng L, Liu B, Yu G (2014) Single-crystalline LiFePO4 nanosheets for high-rate Li-Ion batteries. Nano Lett 14:2849–2853.  https://doi.org/10.1021/nl5008568 Google Scholar
  276. Zheng J et al (2017) Li- and Mn-Rich Cathode Materials: Challenges to Commercialization. Adv Energy Mater 7:1601284.  https://doi.org/10.1002/aenm.201601284 Google Scholar
  277. Zhong QM, Bonakdarpour A, Zhang MJ, Gao Y, Dahn JR (1997) Synthesis and electrochemistry of LiNixMn2-xO4. J Electrochem Soc 144:205–213.  https://doi.org/10.1149/1.1837386 Google Scholar
  278. Zhou F, Kang K, Maxisch T, Ceder G, Morgan D (2004) The electronic structure and band gap of LiFePO4 and LiMnPO4. Solid State Commun 132:181–186.  https://doi.org/10.1016/j.ssc.2004.07.055 Google Scholar
  279. Zhou L, Zhao D, Lou X (2012) LiNi0.5Mn1.5O4 hollow structures as high-performance cathodes for lithium-ion batteries. Angew Chem Int Ed 51:239–241.  https://doi.org/10.1002/anie.201106998 Google Scholar
  280. Zhou L et al (2017) Recent Developments on and prospects for electrode materials with hierarchical structures for lithium-ion batteries. Adv Energy Mater 8(6):1701415.  https://doi.org/10.1002/aenm.201701415 Google Scholar
  281. Zhu Y, Xu Y, Liu Y, Luo C, Wang C (2013) Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries. Nanoscale 5:780–787.  https://doi.org/10.1039/C2NR32758A Google Scholar
  282. Zhu X, Li X, Zhu Y, Jin S, Wang Y, Qian Y (2014a) LiNi0.5Mn1.5O4 nanostructures with two-phase intergrowth as enhanced cathodes for lithium-ion batteries. Electrochim Acta 121:253–257.  https://doi.org/10.1016/j.electacta.2013.12.176 Google Scholar
  283. Zhu X, Li X, Zhu Y, Jin S, Wang Y, Qian Y (2014b) Porous LiNi0.5Mn1.5O4 microspheres with different pore conditions: preparation and application as cathode materials for lithium-ion batteries. J Power Sources 261:93–100.  https://doi.org/10.1016/j.jpowsour.2014.03.047 Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Xiaobo Zhu
    • 1
  • Tongen Lin
    • 1
  • Eric Manning
    • 1
    • 2
  • Yuancheng Zhang
    • 3
  • Mengmeng Yu
    • 3
  • Bin Zuo
    • 3
  • Lianzhou Wang
    • 1
  1. 1.Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneAustralia
  2. 2.Faculty of EngineeringUniversity of AlbertaEdmontonCanada
  3. 3.Shandong Baoli Biomass Energy Corporate, Changan GroupDongyingPeople’s Republic of China

Personalised recommendations