Microwave-assisted synthesis of TiO2 nanoparticles: photocatalytic activity of powders and thin films

  • G. S. FalkEmail author
  • M. Borlaf
  • M. J. López-Muñoz
  • J. C. Fariñas
  • J. B. Rodrigues Neto
  • R. Moreno
Research Paper


A simple, rapid, and effective synthesis methodology for the preparation of high-performance TiO2 nanoparticles and thin films by combining colloidal sol-gel and microwave-assisted hydrothermal synthesis was developed. The obtained results indicate that the heating with microwaves at 180 °C for 20 min was enough to synthesize crystalline TiO2 nanoparticles, presenting anatase as a major phase with a crystal size of ~ 7 nm and a specific surface area of 220 m2 g−1. A secondary thermal treatment improved the crystallinity and induced the anatase-to-rutile transformation. The highest photocatalytic activity was found for the as-synthesized powder without any additional thermal treatment. Thin films were also prepared by dip-coating and its high photocatalytic activity showed a kinetic curve comparable to that of a thin film of commercial TiO2 powder prepared under similar conditions.


TiO2 Nanoparticles Microwave synthesis Thin films Photocatalysis 



The authors thank the resources provided by CAPES under the International Cooperation Program Science without Borders for Special Guest Researcher, PVE (MEC/MCTI/CAPES/CNPQ/FAP/71/2013), Project No. A011/2013.


This work was supported by Ministerio de Economía, Industria y Competitividad (Government of Spain) and FEDER Funds under the Grant No. MAT2015-67586-C3-2-R and CTM2015-69246-R.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Adjimi S, Sergent N, Roux J et al (2014) Photocatalytic paper based on sol–gel titania nanoparticles immobilized on porous silica for VOC abatement. Appl Catal B Environ 154–155:123–133. CrossRefGoogle Scholar
  2. Aguado J, Vangrieken R, Lopez-Muñoz MJ, Marugan JJ (2006) A comprehensive study of the synthesis, characterization and activity of TiO2 and mixed TiO2/SiO2 photocatalysts. Appl Catal A Gen 312:202–212. CrossRefGoogle Scholar
  3. Ashok CH, Rao KV (2017) Synthesis of nanostructured metal oxide by microwave-assisted method and its humidity sensor application. Mater Today 4:3816–3824. CrossRefGoogle Scholar
  4. Belver C, Bedia J, Rodriguez J (2015) Zr-doped TiO2 supported on delaminated clay materials for solar photocatalytic treatment of emerging pollutants. J Hazard Mater 322(Pt A):233–242. Google Scholar
  5. Bhattacharya M, Basak T (2016) A review on the susceptor assisted microwave processing of materials. Energy 97:306–338. CrossRefGoogle Scholar
  6. Borlaf M, Moreno R, Ortiz AL, Colomer MT (2014) Synthesis and photocatalytic activity of Eu3+-doped nanoparticulate TiO2 sols and thermal stability of the resulting xerogels. Mater Chem Phys 144(1-2):8–16. CrossRefGoogle Scholar
  7. Borlaf M, Colomer T, Moreno R, De Andr A (2015) Structural and photoluminescence study of Eu3+/TiO2 xerogels as a function of the temperature using optical techniques. J Am Ceram Soc 345(1):338–345. CrossRefGoogle Scholar
  8. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959. CrossRefGoogle Scholar
  9. Cortéz-Lorenzo A, Escamilla-Perea L, Esquivel-Escalante K, Velázquez-Castillo R (2017) Modified gelcasting of microwave assisted synthesized sulfur-doped anatase for photocatalytic degradation of organic compounds. Catal Today 282:159–167. CrossRefGoogle Scholar
  10. Cui Y, He X, Zhu M, Li X (2017) Preparation of anatase TiO2 microspheres with high exposure (001) facets as the light-scattering layer for improving performance of dye-sensitized solar cells. J Alloys Compd 694:568–573. CrossRefGoogle Scholar
  11. Delekar SD, Yadav HM, Achary SN, Meena SS, Pawar SH (2012) Structural refinement and photocatalytic activity of Fe-doped anatase TiO2 nanoparticles. Appl Surf Sci 263:536–545. CrossRefGoogle Scholar
  12. Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48(5–8):53–229. CrossRefGoogle Scholar
  13. Eggenhuisen TM, Munnik P, Talsma H, Jongh PE, Jong KP (2013) Freeze-drying for controlled nanoparticle distribution in Co/SiO2 Fischer-Tropsch catalysts. J Catal 297:306–313. CrossRefGoogle Scholar
  14. Elsellami L, Dappozze F, Fessi N et al (2017) Highly photocatalytic activity of nanocrystalline TiO2 (anatase, rutile) powders prepared from TiCl4 by sol–gel method in aqueous solutions. Process Saf Environ Prot 113:109–121. CrossRefGoogle Scholar
  15. Esquivel-Escalante K, Nava-Mendoza R, Velázquez-Castillo R (2016) Crystal structure determination of the S/TiO2 system and the correlation with its photocatalytic properties. J Nanosci Nanotechnol 16(1):967–972. CrossRefGoogle Scholar
  16. Falk G, Borlaf M, Bendo T, Novaes de Oliveira AP, Rodrigues Neto JB, Moreno R (2016) Colloidal sol-gel synthesis and photocatalytic activity of nanoparticulate Nb2O5 sols. J Am Ceram Soc 99(6):1968–1973. CrossRefGoogle Scholar
  17. Fan Z, Meng F, Zhang M, Wu Z, Sun Z, Li A (2016) Solvothermal synthesis of hierarchical TiO2 nanostructures with tunable morphology and enhanced photocatalytic activity. Appl Surf Sci 360:298–305. CrossRefGoogle Scholar
  18. Henderson MA (2011) A surface science perspective on TiO2 photocatalysis. Surf Sci Rep 66(6-7):185–297. CrossRefGoogle Scholar
  19. Hou Y, Yang J, Jiang Q, Li W, Zhou Z, Li X, Zhou S (2016) Enhancement of photovoltaic performance of perovskite solar cells by modification of the interface between the perovskite and mesoporous TiO2 film. Sol Energy Mater Sol Cells 155:101–107. CrossRefGoogle Scholar
  20. Huang PJ, Chang H, Yeh CT, Tsai CW (1997) Phase transformation of TiO2 monitored by Thermo-Raman spectroscopy with TGA/DTA. Thermochim Acta 297(1-2):85–92. CrossRefGoogle Scholar
  21. Hurum DC, Agrios AG, Gray KA, Rajh T, Thurnauer MC (2003) Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J Phys Chem B 107(19):4545–4549. CrossRefGoogle Scholar
  22. Jiang H, Liu Y, Zang S, Li J, Wang H (2015) Microwave-assisted hydrothermal synthesis of Nd, N, and P tri-doped TiO2 from TiCl4 hydrolysis and synergetic mechanism for enhanced photoactivity under simulated sunlight irradiation. Mater Sci Semicond Process 40:822–831. CrossRefGoogle Scholar
  23. Kim HK, Mhamane D, Kim MS, Roh HK, Aravindan V, Madhavi S, Roh KC, Kim KB (2016) TiO2-reduced graphene oxide nanocomposites by microwave-assisted forced hydrolysis as excellent insertion anode for Li-ion battery and capacitor. J Power Sources 327:171–177. CrossRefGoogle Scholar
  24. Kobayashi M, Tomita K, Petrykin V, Yin S, Sato T, Yoshimura M, Kakihana M (2007) Hydrothermal synthesis of nanosized titania photocatalysts using novel water-soluble titanium complexes. Solid State Phenom 124–126:723–726. CrossRefGoogle Scholar
  25. Kosmulskil M (1992) Zeta potential of anatase (TiO2) in mixed solvents. Colloids Surf 64(1):57–65. CrossRefGoogle Scholar
  26. Li H, Shen X, Liu Y, Wang L, Lei J, Zhang J (2016) Titanate nanowire as a precursor for facile morphology control of TiO2 catalysts with enhanced photocatalytic activity. J Alloys Compd 687:927–936. CrossRefGoogle Scholar
  27. Liang C, Wu Z, Li P, Fan J, Zhang Y, S G (2016) Chemical bath deposited rutile TiO2 compact layer toward efficient planar heterojunction perovskite solar cells. Appl Surf Sci 391:2–9. Google Scholar
  28. Meng LY, Wang B, Ma MG, Lin KL (2016) The progress of microwave-assisted hydrothermal method in the synthesis of functional nanomaterials. Mater Today Chem 1–2:63–83. CrossRefGoogle Scholar
  29. Mirzaei A, Neri G (2016) Microwave-assisted synthesis of metal oxide nanostructures for gas sensing application: a review. Sensors Actuators B Chem 237:749–775. CrossRefGoogle Scholar
  30. Moreno R (2012) Colloidal processing of ceramics and composites. Adv Appl Ceram 111(5–6):246–253. CrossRefGoogle Scholar
  31. Ohno T, Sarukawa K, Tokieda K, Matsumura M (2001) Morphology of a TiO2 photocatalyst (Degussa, P-25) consisting of anatase and rutile crystalline phases. J Catal 203(1):82–86. CrossRefGoogle Scholar
  32. Pinho L, Rojas M, Mosquera MJ (2015) Ag-SiO2-TiO2 nanocomposite coatings with enhanced photoactivity for self-cleaning application on building materials. Appl Catal B Environ 178:144–154. CrossRefGoogle Scholar
  33. Shen Z, Wang G, Tian H, Sunarso J, Liu L, Liu J, Liu S (2016) Bi-layer photoanode films of hierarchical carbon-doped brookite-rutile TiO2 composite and anatase TiO2 beads for efficient dye-sensitized solar cells. Electrochim Acta 216:429–437. CrossRefGoogle Scholar
  34. Song M, Bian L, Zhou T, Zhao X (2008) Surface potential and photocatalytic activity of rare earths doped TiO2. J Rare Earths 26(5):693–699. CrossRefGoogle Scholar
  35. Sun S, Zhang J, Gao P, Wang Y, Li X, Wu T, Wang Y, Chen Y, Yang P (2017) Full visible-light absorption of TiO2 nanotubes induced by anionic S2 2− doping and their greatly enhanced photocatalytic hydrogen production abilities. Appl Catal B Environ 206:168–174. CrossRefGoogle Scholar
  36. Tauc J (1970) Absorption edge and internal electric fields in amorphous semiconductors. Mater Res Bull 5(8):721–729. CrossRefGoogle Scholar
  37. Tompsett GA, Bowmaker GA, Cooney RP, Metson JB, Rodgers KA, Seakins JM (1995) The Raman spectrum of brookite, TiO2 (Pbca, Z = 8). J Raman Spectrosc 26(1):57–62. CrossRefGoogle Scholar
  38. Weon S, Choi J, Park T, Choi W (2017) Freestanding doubly open-ended TiO2 nanotubes for efficient photocatalytic degradation of volatile organic compounds. Appl Catal B Environ 205:386–392. CrossRefGoogle Scholar
  39. Zhang X, Li D, Wan J, Yu X (2016) Hydrothermal synthesis of TiO2 nanosheets photoelectrocatalyst on Ti mesh for degradation of norfloxacin: influence of pickling agents. Mater Sci Semicond Process 43:47–54. CrossRefGoogle Scholar
  40. Zhu XH, Hang QM (2013) Microscopical and physical characterization of microwave and microwave-hydrothermal synthesis products. Micron 44:21–44. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringFederal University of Santa CatarinaFlorianópolisBrazil
  2. 2.Laboratory for High Performance CeramicsEmpaDübendorfSwitzerland
  3. 3.Department of Chemical and Energy Technology, Chemical and Environmental Technology, Mechanical Technology and Analytical ChemistryRey Juan Carlos UniversityMóstolesSpain
  4. 4.Instituto de Cerámica y VidrioCSICMadridSpain

Personalised recommendations