Oxidative potential of silver nanoparticles measured by electron paramagnetic resonance spectroscopy

  • Bryan HellackEmail author
  • Carmen Nickel
  • Roel P. F. Schins
Brief Communication


The oxidative potential (OP) of engineered nanomaterials (NM) is considered as promising metric for nanosafety research and risk assessment. Here, we present findings on the analysis of the oxidative potential of three different silver NM by means of a complementary electron paramagnetic resonance (EPR) spectroscopy-based approach, i.e., using the spin trap DMPO (5,5-dimethyl-1-pyrroline-N-oxide) and the spin probe CPH (l-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine hydrochloride). The results revealed that both methods are principally applicable for OP analysis of nanosilver. However, one of the Ag NM (i.e., NM300) did not cause notable OH▪ generation in the presence of hydrogen peroxide, while a clear OP was detected using the CPH method for all three Ag NPs tested. For the NM300, also a strong OH▪ scavenging potency could be demonstrated, which was due to its surfactant-containing dispersant. This finding may explain for the reported differences in effects of this widely applied reference nanosilver versus other types of Ag NM in toxicological studies. Our findings also demonstrate the relevance of using more than one assay to determine the OP of NM in general.

Graphical abstract


Electron paramagnetic resonance spectroscopy DMPO CPH Nanoparticles Oxidative potential Nanosilver Ag 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Austin LA, Mackey MA, Dreaden EC, El-Sayed MA (2014) The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery. Arch Toxicol 88(7):1391–1417. CrossRefGoogle Scholar
  2. Boots AW, Gerloff K, Bartholomé R, van Berlo D, Ledermann K, GRMM H, Bast A, van Schooten FJ, Albrecht C, Schins RPF (2012) Neutrophils augment LPS-mediated pro-inflammatory signaling in human lung epithelial cells. Biochim Biophys Acta (BBA) - Mol Cell Res 1823(7):1151–1162. CrossRefGoogle Scholar
  3. Borm PJA, Kelly F, Künzli N, Schins RPF, Donaldson K (2007) Oxidant generation by particulate matter: from biologically effective dose to a promising, novel metric. Occup Environ Med 64(2):73–74. CrossRefGoogle Scholar
  4. Comero S et al (2011) NM-300 silver characterisation, Stability, Homogeneity JRc reportGoogle Scholar
  5. Dikalov S, Griendling KK, Harrison DG (2007) Measurement of reactive oxygen species in cardiovascular studies. Hypertension 49(4):717–727. 87211.6b CrossRefGoogle Scholar
  6. Dikalov SI, Kirilyuk IA, Voinov M, Grigor'ev IA (2011) EPR detection of cellular and mitochondrial superoxide using cyclic hydroxylamines. Free Radic Res 45(4):417–430. CrossRefGoogle Scholar
  7. Driessen MD, Mues S, Vennemann A, Hellack B, Bannuscher A, Vimalakanthan V, Riebeling C, Ossig R, Wiemann M, Schnekenburger J, Kuhlbusch TAJ, Renard B, Luch A, Haase A (2015) Proteomic analysis of protein carbonylation: a useful tool to unravel nanoparticle toxicity mechanisms. Part Fibre Toxicol 12(1):36. CrossRefGoogle Scholar
  8. Fenoglio I, Tomatis M, Lison D, Muller J, Fonseca A, Nagy JB, Fubini B (2006) Reactivity of carbon nanotubes: free radical generation or scavenging activity? Free Radic Biol Med 40(7):1227–1233. freeradbiomed. 2005.11.010 CrossRefGoogle Scholar
  9. Fu PP, Xia Q, Hwang HM, Ray PC, Yu H (2014) Mechanisms of nanotoxicity: generation of reactive oxygen species. J Food Drug Anal 22(1):64–75. CrossRefGoogle Scholar
  10. Haberl N, Hirn S, Holzer M, Zuchtriegel G, Rehberg M, Krombach F (2015) Effects of acute systemic administration of TiO2, ZnO, SiO2, and Ag nanoparticles on hemodynamics, hemostasis and leukocyte recruitment. Nanotoxicology 9(8):963–971. 17435390.2014.992815 CrossRefGoogle Scholar
  11. He W, Zhou YT, Wamer WG, Boudreau MD, Yin JJ (2012) Mechanisms of the pH dependent generation of hydroxyl radicals and oxygen induced by Ag nanoparticles. Biomaterials 33(30):7547–7555. CrossRefGoogle Scholar
  12. Hellack B et al (2017) Analytical methods to assess the oxidative potential of nanoparticles: a review. Environ Sci Nano.
  13. Janssen NA et al (2015) Associations between three specific a-cellular measures of the oxidative potential of particulate matter and markers of acute airway and nasal inflammation in healthy volunteers. Occup Environ Med 72(1):49–56. CrossRefGoogle Scholar
  14. Johnston HJ, Hutchison G, Christensen FM, Peters S, Hankin S, Stone V (2010) A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity. Crit Rev Toxicol 40(4):328–346. CrossRefGoogle Scholar
  15. Kermanizadeh A, Gosens I, MacCalman L, Johnston H, Danielsen PH, Jacobsen NR, Lenz AG, Fernandes T, Schins RPF, Cassee FR, Wallin H, Kreyling W, Stoeger T, Loft S, Møller P, Tran L, Stone V (2016) A multilaboratory toxicological assessment of a panel of 10 engineered nanomaterials to human health—ENPRA project—the highlights, limitations, and current and future challenges. J Toxicol Environ Health B Crit Rev 19(1):1–28. CrossRefGoogle Scholar
  16. Kettler K, Giannakou C, de Jong WH, Hendriks AJ, Krystek P (2016) Uptake of silver nanoparticles by monocytic THP-1 cells depends on particle size and presence of serum proteins. J Nanopart Res 18(9):286. CrossRefGoogle Scholar
  17. Künzli N, Mudway IS, Götschi T, Shi T, Kelly FJ, Cook S, Burney P, Forsberg B, Gauderman JW, Hazenkamp ME, Heinrich J, Jarvis D, Norbäck D, Payo-Losa F, Poli A, Sunyer J, Borm PJ (2006) Comparison of oxidative properties, light absorbance, total and elemental mass concentration of ambient PM2.5 collected at 20 European sites. Environ Health Perspect 114(5):684–690CrossRefGoogle Scholar
  18. Li N, Xia T, Nel AE (2008) The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radic Biol Med 44(9):1689–1699. CrossRefGoogle Scholar
  19. Marano F, Hussain S, Rodrigues-Lima F, Baeza-Squiban A, Boland S (2011) Nanoparticles: molecular targets and cell signalling. Arch Toxicol 85(7):733–741. CrossRefGoogle Scholar
  20. Papageorgiou I, Brown C, Schins R, Singh S, Newson R, Davis S, Fisher J, Ingham E, Case CP (2007) The effect of nano- and micron-sized particles of cobalt-chromium alloy on human fibroblasts in vitro. Biomaterials 28(19):2946–2958. CrossRefGoogle Scholar
  21. Shi T, Knaapen AM, Begerow J, Birmili W, Borm PJ, Schins RPF (2003a) Temporal variation of hydroxyl radical generation and 8-hydroxy-2′-deoxyguanosine formation by coarse and fine particulate matter. Occup Environ Med 60(5):315–321. CrossRefGoogle Scholar
  22. Shi T, Schins RPF, Knaapen AM, Kuhlbusch T, Pitz M, Heinrich J, Borm PJA (2003b) Hydroxyl radical generation by electron paramagnetic resonance as a new method to monitor ambient particulate matter composition. J Environ Monit 5(4):550–556. CrossRefGoogle Scholar
  23. Sorensen SN, Baun A (2015) Controlling silver nanoparticle exposure in algal toxicity testing—a matter of timing. Nanotoxicology 9(2):201–209. CrossRefGoogle Scholar
  24. Sthijns MMJPE, Thongkam W, Albrecht C, Hellack B, Bast A, Haenen GRMM, Schins RPF (2017) Silver nanoparticles induce hormesis in A549 human epithelial cells. Toxicol in Vitro 40:223–233. CrossRefGoogle Scholar
  25. Stone V, Johnston H, Clift MJ (2007) Air pollution, ultrafine and nanoparticle toxicology: cellular and molecular interactions. IEEE Trans Nanobioscience 6(4):331–340. CrossRefGoogle Scholar
  26. Thongkam W, Gerloff K, van Berlo D, Albrecht C, Schins RP (2017) Oxidant generation, DNA damage and cytotoxicity by a panel of engineered nanomaterials in three different human epithelial cell lines. Mutagenesis 32(1):105–115. mutage/gew056 CrossRefGoogle Scholar
  27. Wang Z, Xia T, Liu S (2015) Mechanisms of nanosilver-induced toxicological effects: more attention should be paid to its sublethal effects. Nanoscale 7(17):7470–7481. CrossRefGoogle Scholar
  28. Wessels A, Birmili W, Albrecht C, Hellack B, Jermann E, Wick G, Harrison RM, Schins RPF (2010) Oxidant generation and toxicity of size-fractionated ambient particles in human lung epithelial cells. Environ Sci Technol 44(9):3539–3545. CrossRefGoogle Scholar
  29. Zhang W, Li Y, Niu J, Chen Y (2013) Photogeneration of reactive oxygen species on uncoated silver, gold, nickel, and silicon nanoparticles and their antibacterial effects. Langmuir 29(15):4647–4651. CrossRefGoogle Scholar
  30. Zhao J, Riediker M (2014) Detecting the oxidative reactivity of nanoparticles: a new protocol for reducing artifacts. J Nanopart Res 16(7):2493. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Institute of Energy and Environmental Technology (IUTA) e.VDuisburgGermany
  2. 2.IUF-Leibniz Research Institute for Environmental MedicineDüsseldorfGermany

Personalised recommendations