Bioselective synthesis of gold nanoparticles from diluted mixed Au, Ir, and Rh ion solution by Anabaena cylindrica

  • Anna S. Rochert
  • Liz M. Rösken
  • Christian B. Fischer
  • Andreas Schönleber
  • Dennis Ecker
  • Sander van Smaalen
  • Stefan Geimer
  • Stefan Wehner
Research Paper


Over the last years, an environmentally friendly and economically efficient way of nanoparticle production has been found in the biosynthesis of metal nanoparticles by bacteria and cyanobacteria. In this study, Anabaena cylindrica, a non-toxic cyanobacterium, is deployed in a diluted ionic aqueous mixture of equal concentrations of gold, iridium, and rhodium, of 0.1 mM each, for the selective biosynthesis of metal nanoparticles (NPs). To analyze the cyanobacterial metal uptake, X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and inductively coupled plasma mass spectrometry (ICP-MS) were applied. Only gold can be found in crystalline and nanoparticle form inside the cells of A. cylindrica, and it is the only metal for which ICP-MS analyses show a rapid decrease of the concentration in the culture medium. A slight decrease of rhodium and none of iridium was observed in the evaluated timeline of 51 h. The average diameter size of the emerging gold nanoparticles increased over the first few days, but is found to be below 10 nm even after more than 2 days. A new evaluation method was used to determine the spatially resolved distribution of the nanoparticles inside the cyanobacterial cells. This new method was also used to analyze TEM images from earlier studies of A. cylindrica and Anabaena sp., both incubated with an overall concentration of 0.8 mM Au3+ to compare the metal uptake. A. cylindrica was found to be highly selective towards the formation of gold nanoparticles in the presence of rhodium and iridium.


Cyanobacteria Gold nanoparticles Biosynthesis Bioselective recycling 



We thank Werner Manz, Jutta Meier, Alexandra Grün (Microbiology, Campus Koblenz, University Koblenz-Landau), Manoj Schulz, Rita Beel, Michael P. Schlüsener, Lars Düster, and Thomas A. Ternes (Federal Institute of Hydrology, BfG, Koblenz) for analytical support and helpful discussions; Philipp Schuster (Software Languages Team, Campus Koblenz, University Koblenz-Landau) for realizing the image processing tool in HASKELL; Rita Grotjahn (Cell Biology/Electron Microscopy, University Bayreuth) for technical assistance as well as Jan Guretzke for testing the image processing tool.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11051_2017_4039_MOESM1_ESM.docx (1.5 mb)
ESM 1 (DOCX 1583 kb).


  1. Banerjee K, Rai VR (2016) Study on green synthesis of gold nanoparticles and their potential applications as catalysts. J Clust Sci 27:1307–1315. CrossRefGoogle Scholar
  2. Bansal V, Bharde A, Ramanathan R, Bhargava SK (2012) Inorganic materials using “unusual” microorganisms. Adv Colloid Interf Sci 179-182:150–168. CrossRefGoogle Scholar
  3. Brayner R, Barberousse H, Hernadi M, Djedjat C, Yéprémian C, Coradin T, Livage J, Fiévet F, Couté A (2007) Cyanobacteria as bioreactors for the synthesis of Au, Ag, Pd, and Pt nanoparticles via an enzyme-mediated route. J Nanosci Nanotechnol 7:2696–2708. CrossRefGoogle Scholar
  4. Budroni G, Corma A (2006) Gold-organic-inorganic high-surface-area materials as precursors of highly active catalysts. Angew Chem Int Ed 45:3321–3328. CrossRefGoogle Scholar
  5. Cui M, Zhao Y, Wang C, Song Q (2016) Synthesis of 2.5 nm colloidal iridium nanoparticles with strong surface enhanced Raman scattering activity. Microchim Acta 183:2047–2053. CrossRefGoogle Scholar
  6. Dahoumane SA, Yéprémian C, Djédiat C, Couté A, Fiévet F, Coradin T, Brayner R (2014) A global approach of the mechanism involved in the biosynthesis of gold colloids using micro-algae. J Nanopart Res 16:2607. CrossRefGoogle Scholar
  7. Dahoumane SA, Yéprémian C, Djédiat C, Couté A, Fiévet F, Coradin T, Brayner R (2016) Improvement of kinetics, yield, and colloidal stability of biogenic gold nanoparticles using living cells of Euglena gracilis microalga. J Nanopart Res 18:79. CrossRefGoogle Scholar
  8. De Corte S, Hennebel T, De Gusseme B, Verstraete W, Boon N (2012) Bio-palladium: from metal recovery to catalytic applications. Microb Biotechnol 5:5–17. CrossRefGoogle Scholar
  9. Fawell JK, Mitchell RE, Hill RE, Everett DJ (1999) The toxicity of cyanobacterial toxins in the mouse: II anatoxin-a. Hum Exp Toxicol 18:168–173CrossRefGoogle Scholar
  10. Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 3:845–910. CrossRefGoogle Scholar
  11. Foscan M, Ardelean II, Craciun C, Astilean S (2011) Interplay between gold nanoparticle biosynthesis and metabolic activity of cyanobacterium Synechocystis sp. PCC 6803. Nanotechnology 22:485101. CrossRefGoogle Scholar
  12. Haverkamp RG, Marshall AT, van Agterveld D (2007) Pick your carats: nanoparticles of gold-silver-copper alloy produced in vivo. J Nanopart Res 9:697–700. CrossRefGoogle Scholar
  13. Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650. CrossRefGoogle Scholar
  14. Jamal F, Jean-Sébastien G, Maël P, Edmond T, Christian R (2012) Gold nanoparticle synthesis in microfluidic systems and immobilisation in microreactors designed for the catalysis of fine organic reactions. Microsyst Technol 18:151–158. CrossRefGoogle Scholar
  15. Karnani RL, Chowdhary A (2013) Biosynthesis of silver nanoparticle by eco-friendly method. Indian J Nano Sci 2:25–31Google Scholar
  16. Korbekandi H, Iravani S, Abbasi S (2009) Production of nanoparticles using organisms. Crit Rev Biotechnol 29:279–306. CrossRefGoogle Scholar
  17. Kundu S, Liang H (2011) Shape-selective formation and characterization of catalytically active iridium nanoparticles. J Colloid Interface Sci 354(2):597–606. CrossRefGoogle Scholar
  18. Langford JI, Wilson AJC (1978) Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Crystallogr 11:102–113. CrossRefGoogle Scholar
  19. Le Bail A, Duroy H, Fourquet JL (1988) Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction. Mater Res Bull 23:447–452. CrossRefGoogle Scholar
  20. Lengke MF, Ravel B, Fleet ME, Wanger G, Gordon RA, Southam G (2006) Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold(III)-chloride complex. Environ Sci Technol 40:6304–6309. CrossRefGoogle Scholar
  21. Liu H, Huang J, Sun D, Odoom-Wubah T, Li J, Li Q (2014) Continuous-flow biosynthesis of Au-Ag bimetallic nanoparticles in a microreactor. J Nanopart Res 16:2698. CrossRefGoogle Scholar
  22. Murray AJ, Mikheenko IP, Goralska E, Rowson NA, Macaskie LE (2007) Biorecovery of platinum group metals from secondary sources. Adv Mater Res 20-21:651–654. CrossRefGoogle Scholar
  23. Parajuli D, Kawakita H, Inoue K, Ohto K, Kajiyama K (2007) Persimmon peel gel for the selective recovery of gold. Hydrometallurgy 87:133–139. CrossRefGoogle Scholar
  24. Parial D, Patra HK, Dasgupta AKR, Pal R (2012) Screening of different algae for green synthesis of gold nanoparticles. Eur J Phycol 47(1):22–29. CrossRefGoogle Scholar
  25. Rösken LM, Cappel F, Körsten S, Fischer CB, Schönleber A, van Smaalen S, Geimer S, Beresko C, Ankerhold G, Wehner S (2016) Time-dependent growth of crystalline Au0-nanoparticles in cyanobacteria as self-reproducing bioreactors: 2. Anabaena cylindrica. Beilstein J Nanotechnol 7:312–327. CrossRefGoogle Scholar
  26. Rösken LM, Körsten S, Fischer CB, Schönleber A, van Smaalen S, Geimer S, Wehner S (2014) Time-dependent growth of crystalline Au0-nanoparticles in cyanobacteria as self-reproducing bioreactors: 1. Anabaena sp. J Nanopart Res 16:2370. CrossRefGoogle Scholar
  27. Roychoudhury P, Ghosh S, Pal R (2015) Cyanobacteria mediated green synthesis of gold-silver nanoalloy. J Plant Biochem Biotechnol 25(1):73–78. CrossRefGoogle Scholar
  28. Scherrer P (1918) Nachr Ges Wiss Goettingen Math-Phys Kl 26:98–100Google Scholar
  29. Smith DK, Jenkins R (1996) International centre for diffraction data (ICDD): powder diffraction file PDF-2, release 2003 reference number 00-004-0784. J Res Natl Inst Stand Technol 101:259. CrossRefGoogle Scholar
  30. Srivastava SK, Constanti M (2012) Room temperature biogenic synthesis of multiple nanoparticles (Ag, Pd, Fe, Rh, Ni, Ru, Pt, Co, and Li) by Pseudomonas aeruginosa SM1. J Nanopart Res 14:831. CrossRefGoogle Scholar
  31. Swanson HE, Tatge E (1953) Standard x-ray diffraction powder patterns, vol I - Data for 54 Inorganic Substances. National Bureau of Standards Circular 539, Washington, p 33Google Scholar
  32. Swanson HE, Fuyat RK, Ugrinic GM (1954) Standard x-ray diffraction powder patterns, vol III - Data for 34 Inorganic Substances. National Bureau of Standards Circular 539, Washington, p 9Google Scholar
  33. Swanson HE, Fuyat RK, Ugrinic GM (1955) Standard x-ray diffraction powder patterns, vol IV - Data for 42 Inorganic Substances. National Bureau of Standards Circular 539, Washington, pp 9–10Google Scholar
  34. Tamaoki K, Saito N, Nomura T, Konishi Y (2013) Microbial recovery of rhodium from dilute solutions by the metal ion-reducing bacterium Shewanella algae. Hydrometallurgy 139:26–29. CrossRefGoogle Scholar
  35. Xiong Y, Adhikari CR, Kawakita H, Ohto K, Inoue K, Harada H (2009) Selective recovery of precious metals by persimmon waste chemically modified with dimethylamine. Bioresour Technol 100:4083–4089. CrossRefGoogle Scholar
  36. Zhang Y, Grass ME, Kuhn JN, Tao F, Habas SE, Huang W, Yang P, Somorjai GA (2008) Highly selective synthesis of catalytically active monodisperse rhodium nanocubes. J Am Chem Soc 130(18):5868–5869. CrossRefGoogle Scholar
  37. Zhang T, Li SC, Zhu W, Ke J, JW Y, Zhang ZP, Dai LX, Gu J, Zhang YW (2015) Iridium ultrasmall nanoparticles, worm-like chain nanowires, and porous nanodendrites: One-pot solvothermal synthesis and catalytic CO oxidation activity. Surf Sci 648:319–327. CrossRefGoogle Scholar
  38. Zhu N, Cao Y, Shi C, Wu P, Ma H (2016) Biorecovery of gold as nanoparticles and its catalytic activities for p-nitrophenol degradation. Eviron Sci Pollut Res 23:7627–7638. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Anna S. Rochert
    • 1
  • Liz M. Rösken
    • 1
  • Christian B. Fischer
    • 1
  • Andreas Schönleber
    • 2
  • Dennis Ecker
    • 3
  • Sander van Smaalen
    • 2
  • Stefan Geimer
    • 4
  • Stefan Wehner
    • 1
  1. 1.Institut für Integrierte Naturwissenschaften, Abteilung PhysikUniversität Koblenz LandauKoblenzGermany
  2. 2.Lehrstuhl für KristallographieUniversität BayreuthBayreuthGermany
  3. 3.Department G2—Aquatic ChemistryFederal Institute of HydrologyKoblenzGermany
  4. 4.Zellbiologie, ElektronenmikroskopieUniversität BayreuthBayreuthGermany

Personalised recommendations