Acetonitrile mediated facile synthesis and self-assembly of silver vanadate nanowires into 3D spongy-like structure as a cathode material for lithium ion battery

  • W. Klockner
  • R. M. Yadav
  • J. Yao
  • S. Lei
  • A. Aliyan
  • J. Wu
  • A. A. Martí
  • R. Vajtai
  • P. M Ajayan
  • J. C. Denardin
  • D. Serafini
  • F. Melo
  • D. P. SinghEmail author
Research Paper


We report the facile, one-step acetonitrile-mediated synthesis and self-assembly of β-AgVO3 nanowires into three-dimensional (3D) porous spongy-like hydrogel (~ 4 cm diameter) as cathode material for lithium ion battery of high performance and long-term stability. 3D structures made with superlong, very thin, and monoclinic β-AgVO3 nanowires exhibit high specific discharge capacities of 165 mAh g−1 in the first cycle and 100 mAh g−1 at the 50th cycle, with a cyclic capacity retention of 53% at a current density of 50 mA g−1. 3D structures are synthesized by reaction between ammonium vanadate and silver nitrate solution containing 5 mL of acetonitrile followed by a hydrothermal treatment at 200 °C for 12 h. Acetonitrile (used here for the first time in the silver vanadate synthesis) plays an important role in the self-assembly of the silver vanadate nanowires. A tentative growth mechanism for the 3D structure and lithium ions intercalation into β-AgVO3 nanowires has been discussed and described.


Silver vanadate Self-assembly Acetonitrile AgVO3 3D structures Lithium ion battery Energy storage 



Authors D. P. Singh and J. C. Denardin acknowledge with gratitude the financial supports from CONICYT Fondeyt Regular 1151527 and CONICYT BASAL CEDENNA FB0807, Chile respectively. R. M. Yadav acknowledges the financial support from UGC India for Raman Fellowship. A. A. Marti acknowledges the Welch Foundation (grant C-1743) for financial support.

Compliance with ethical standards


This study was funded by CONICYT Chile (Fondeyt Regular 1151527), UGC India for (Raman Fellowship), and Welch Foundation (grant C-1743) USA.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11051_2017_3983_MOESM1_ESM.docx (1.1 mb)
ESM 1 Supporting data available for XRD, SEM images and description of the as synthesized materials before putting in thefurnace (DOCX 1.10 mb)


  1. Aguado J, Vangrieken R, Lopez-Muñoz MJ, Marugan J (2006) A comprehensive study of the synthesis, characterization and activity of TiO2 and mixed TiO2/SiO2 photocatalysts. Appl Catal A Gen 312:202–212. doi: 10.1016/j.apcata.2006.07.003 CrossRefGoogle Scholar
  2. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657. doi: 10.1038/451652a CrossRefGoogle Scholar
  3. Bao Q, Bao S, Li CM, Qi X, Pan C, Zang J, Wang W, Tang DY (2007a) Lithium insertion in channel-structured β-AgVO3: in situ Raman study and computer simulation. Chem Mater 19:5965–5972. doi: 10.1021/cm071728i CrossRefGoogle Scholar
  4. Bao SJ, Bao QL, Li CM, Chen TP, Sun CQ, Dong ZL, Gan Y, Zhang J (2007b) Synthesis and electrical transport of novel channel-structured β-AgVO3. Small 3:1174–1177. doi: 10.1002/smll.200700032 CrossRefGoogle Scholar
  5. Baran EJ (1997) Vibrational spectra of Ba2(VO)V2O8. J Raman Spectrosc 28:289–291. doi: 10.1002/(SICI)1097-4555(199607)27:73.3.CO;2-Q CrossRefGoogle Scholar
  6. Benmokhtar S, El Jazouli A, Chaminade JP, Gravereau P, Guillen F, de Waal D (2004) Synthesis, crystal structure and optical properties of BiMgVO5. J Solid State Chem 177:4175–4182. doi: 10.1016/j.jssc.2004.06.030 CrossRefGoogle Scholar
  7. Cao AM, Hu JS, Liang HP, Wan LJ (2005) Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries. Angew Chemie Int Ed 44:4391–4395. doi: 10.1002/anie.200500946 CrossRefGoogle Scholar
  8. Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3:31–35. doi: 10.1038/nnano.2007.411 CrossRefGoogle Scholar
  9. Chang TG, Irish DE (1974) Solvation and ion association in the system AgNO3-CH3CN: a Raman and infrared spectral study. J Solut Chem 3:161–174. doi: 10.1007/BF00645631 CrossRefGoogle Scholar
  10. Chernova NA, Roppolo M, Dillon AC, Whittingham MS (2009) Layered vanadium and molybdenum oxides: batteries and electrochromics. J Mater Chem 19:2526–2552. doi: 10.1039/b819629j CrossRefGoogle Scholar
  11. Das DP, Barik RK, Das J, Mohapatra P, Parida KM (2012) Visible light induced photo-hydroxylation of phenol to catechol over RGO–Ag3VO4 nanocomposites without the use of H2O2. RSC Adv 2:7377–7379. doi: 10.1039/c2ra20703f CrossRefGoogle Scholar
  12. Ebraheem S, El-Saied A (2013) Band gap determination from diffuse reflectance measurements of irradiated lead borate glass system doped with TiO2 by using diffuse reflectance technique. Mater Sci Appl 04:324–329. doi: 10.4236/msa.2013.45042 Google Scholar
  13. Fang G, Zhou J, Hu Y, Cao X, Tang Y, Liang S (2015) Facile synthesis of potassium vanadate cathode material with superior cycling stability for lithium ion batteries. J Power Sources 275:694–701. doi: 10.1016/j.jpowsour.2014.11.052 CrossRefGoogle Scholar
  14. Feng M, Luo LB, Nie B, Yu SH (2013) P-type beta-silver vanadate nanoribbons for nanoelectronic devices with tunable electrical properties. Adv Funct Mater 23:5116–5122. doi: 10.1002/adfm.201300413 CrossRefGoogle Scholar
  15. Fromon M, Treiner C, Convert O, Sundheim BC (1982) NMR study of dilute ternary solutions: acetonitrile, silver nitrate and other electrolytes in water at 25°C. Polyhedron 1:145–148. doi: 10.1016/S0277-5387(00)80975-4 CrossRefGoogle Scholar
  16. Frost RL, Erickson KL, Weier ML, Carmody O (2005) Raman and infrared spectroscopy of selected vanadates. Spectrochim Acta A Mol Biomol Spectrosc 61:829–834. doi: 10.1016/j.saa.2004.06.006 CrossRefGoogle Scholar
  17. Ge J, Zhang Q, Zhang T, Yin Y (2008) Core-satellite nanocomposite catalysts protected by a porous silica shell: controllable reactivity, high stability, and magnetic recyclability. Angew Chemie Int Ed 47:8924–8928. doi: 10.1002/anie.200803968 CrossRefGoogle Scholar
  18. Goodenough JB (2007) Cathode materials: a personal perspective. J Power Sources 174:996–1000. doi: 10.1016/j.jpowsour.2007.06.217 CrossRefGoogle Scholar
  19. Gotić M, Musić S, Ivanda M, Šoufek M, Popović S (2005) Synthesis and characterization of bismuth(III) vanadate. J Mol Struct 744:535–540. doi: 10.1016/j.molstruc.2004.10.075 Google Scholar
  20. Graf C, Ohser-Wiedemann R, Kreisel G (2007) Preparation and characterization of doped metal-supported TiO2-layers. J Photochem Photobiol A Chem 188:226–234. doi: 10.1016/j.jphotochem.2006.12.019 CrossRefGoogle Scholar
  21. Han C, Pi Y, An Q, Mai L, Xie J, Xu X, Xu L, Zhao Y, Niu C, Khan AM, He X (2012) Substrate-assisted self-organization of radial β-AgVO3 nanowire clusters for high rate rechargeable lithium batteries. Nano Lett 12:4668–4673. doi: 10.1021/nl301993v CrossRefGoogle Scholar
  22. Holtz RD, Souza FAG, Brocchi M, Martins D, Durán N, Alves OL (2010) Development of nanostructured silver vanadates decorated with silver nanoparticles as a novel antibacterial agent. Nanotechnology 21:185102–185110. doi: 10.1088/0957-4484/21/18/185102 CrossRefGoogle Scholar
  23. Jang SH, Yoon JH, Huh YD, Yoon S (2014) Creating SERS hot spots on ultralong single-crystal β-AgVO3 microribbons. J Mater Chem C 2:4051–4056. doi: 10.1039/C4TC00078A CrossRefGoogle Scholar
  24. Kang B, Ceder G (2009) Battery materials for ultrafast charging and discharging. Nature 458:790–793. doi: 10.1038/nature07853 CrossRefGoogle Scholar
  25. Karvaly B, Hevesi I (1971) Investigations on diffuse reflectance spectra of V2O5 powder Zeitschrift fur Naturforsch. Sect A J Phys Sci 26:245–249. doi: 10.1515/zna-1971-0211 Google Scholar
  26. Khan SUM, Al-Shahry M, Ingler WB (2002) Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297:2243–2245. doi: 10.1126/science.1075035 CrossRefGoogle Scholar
  27. Kittaka S, Matsuno K, Akashi H (1999) Crystal structure of α-AgVO3and phase relation of AgVO3. J Solid State Chem 142:360–367. doi: 10.1006/jssc.1998.8044 CrossRefGoogle Scholar
  28. Kittaka S, Nishida S, Iwashita T, Ohtani T (2002) Reactivity and structural properties of a mechanocehmically treated Ag2O-V2O5 system in relation to AgVO3 polymorphs. J Solid State Chem 164:144–149. doi: 10.1006/jssc.2001.9461 CrossRefGoogle Scholar
  29. Kittaka S, Yata Y, Matsuno K, Nishido H (2000) Interaction of Ag ions with a vanadium pentoxide hydrate—formation of silver vanadate at low temperature. J Mater Sci 35:2185–2192. doi: 10.1023/A:1004762506710 CrossRefGoogle Scholar
  30. Kubelka P (1948) New contributions to the optics of intensely light-scattering materials. Part I J Opt Soc Am 38:448–457. doi: 10.1364/JOSA.38.000448 CrossRefGoogle Scholar
  31. Levi MD, Gamolsky K, Aurbach D, Heider U, Oesten R (1999) Determination of the Li ion chemical diffusion coefficient for the topotactic solid-state reactions occurring via a two-phase or single-phase solid solution pathway. J Electroanal Chem 477:32–40. doi: 10.1016/S0022-0728(99)00386-1 CrossRefGoogle Scholar
  32. Liang L, Xu Y, Lei Y, Liu H (2014) 1-Dimensional AgVO3 nanowires hybrid with 2-dimensional graphene nanosheets to create 3-dimensional composite aerogels and their improved electrochemical properties. Nano 6:3536–3539. doi: 10.1039/c3nr06899d Google Scholar
  33. Lin H, Huang CP, Li W, Ni C, Shah SI, Tseng YH (2006) Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol. Appl Catal B Environ 68:1–11. doi: 10.1016/j.apcatb.2006.07.018 CrossRefGoogle Scholar
  34. Liu H, Tian Y, Amal R, Wang D (2016) An integrated nanocarbon–cellulose membrane for solid-state supercapacitors. Sci Bull 61:368–377. doi: 10.1007/s11434-016-1019-9 CrossRefGoogle Scholar
  35. Liu J, Wang X, Peng Q, Li Y (2005) Vanadium pentoxide nanobelts: highly selective and stable ethanol sensor materials. Adv Mater 17:764–767. doi: 10.1002/adma.200400993 CrossRefGoogle Scholar
  36. Liu S, Wang W, Zhou L, Zhang L (2006) Silver vanadium oxides nanobelts and their chemical reduction to silver nanobelts. J Cryst Growth 293:404–408. doi: 10.1016/j.jcrysgro.2006.05.045 CrossRefGoogle Scholar
  37. López R, Gómez R (2012) Band-gap energy estimation from diffuse reflectance measurements on sol-gel and commercial TiO2: a comparative study. J Sol-Gel Sci Technol 61:1–7. doi: 10.1007/s10971-011-2582-9 CrossRefGoogle Scholar
  38. Lu H, Deng K, Yan N, MaY GB, Wang Y, Li L (2016) Efficient perovskite solar cells based on novel three-dimensional TiO2 network architectures. Sci Bull 61:778–786. doi: 10.1007/s11434-016-1050-x CrossRefGoogle Scholar
  39. Mai L, Xu L, Gao Q, Han C, Hu B, Pi Y (2010a) Single β-AgVO3 nanowire H2S sensor. Nano Lett 10:2604–2608. doi: 10.1021/nl1013184 CrossRefGoogle Scholar
  40. Mai L, Xu L, Han C, Xu X, Luo Y, Zhao S, Zhao Y (2010b) Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for lithium ion batteries. Nano Lett 10:4750–4755. doi: 10.1021/nl103343w CrossRefGoogle Scholar
  41. Mai L, Xu X, Han C, Luo Y, Xu L, Wu YA, Zhao Y (2011a) Rational synthesis of silver vanadium oxides/polyaniline triaxial nanowires with enhanced electrochemical property. Nano Lett 11:4992–4996. doi: 10.1021/nl202943b CrossRefGoogle Scholar
  42. Mai LQ, Yang F, Zhao YL, Xu X, Xu L, Luo YZ (2011b) Hierarchical MnMoO4/CoMoO4 heterostructured nanowires with enhanced supercapacitor performance. Nat Commun 2:381–385. doi: 10.1038/ncomms1387 CrossRefGoogle Scholar
  43. Mao C, Wu X, Zhu JJ (2008) Large scale preparation of β-AgVO3 nanowires using a novel sonochemical route. J Nanosci Nanotechnol 8:3203–3207. doi: 10.1166/jnn.2008.102 CrossRefGoogle Scholar
  44. Nordlinder S, Lindgren J, Gustafsson T, Edström K (2003) The structure and electrochemical performance of Na+, K+­, and Ca2+- vanadium oxide nanotubes. J Electrochem Soc 150:E280–E284. doi: 10.1149/1.1566414 CrossRefGoogle Scholar
  45. Oliver BG, Janz GJ (1970) Raman spectra of silver nitrate in water-acetonitrile mixtures. J Phys Chem 7:3819–3822. doi: 10.1021/j100715a017 CrossRefGoogle Scholar
  46. Popovi ZV, Konstantinovi MJ, Moshchalkov VV, Isobe M, Ueda Y (2003) Raman scattering study of charge ordering in β-Ca0.33V2O5. J Phys Condens Matter 15:L139–L145CrossRefGoogle Scholar
  47. Shao MW, Lu L, Wang H, Wang S, Zhang ML, Ma DDD, Lee ST (2008) An ultrasensitive method: surface-enhanced Raman scattering of Ag nanoparticles from β-silver vanadate and copper. Chem Commun 7345:2310–2312. doi: 10.1039/b802405g CrossRefGoogle Scholar
  48. Sharma S, Panthöfer M, Jansen M, Ramanan A (2005) Ion exchange synthesis of silver vanadates from organically templated layered vanadates. Mater Chem Phys 91:257–260. doi: 10.1016/j.matchemphys.2004.08.024 CrossRefGoogle Scholar
  49. Shi S, Cao M, He X, Xie H (2007) Surfactant-assisted hydrothermal growth of single-crystalline ultrahigh-aspect-ratio vanadium oxide nanobelts. Cryst Growth Des 7:1893–1897. doi: 10.1021/cg060847s CrossRefGoogle Scholar
  50. Singh DP, Polychronopoulou K, Rebholz C, Aouadi SM (2010) Room temperature synthesis and high temperature frictional study of silver vanadate nanorods. Nanotechnology 21:325601–325608. doi: 10.1088/0957-4484/21/32/325601 CrossRefGoogle Scholar
  51. Song JM, Lin YZ, Yao HB, Fan FJ, Li XG, Yu SH (2009) Superlong beta-AgVO3 nanoribbons: high-yield synthesis by a pyridine-assisted solution approach, their stability, electrical and electrochemical properties. ACS Nano 3:653–360. doi: 10.1021/nn800813s CrossRefGoogle Scholar
  52. Su Q, Huang CK, Wang Y, Fan YC, Lu BA, Lan W, Wang YY, Liu XQ (2009) Formation of vanadium oxides with various morphologies by chemical vapor deposition. J Alloys Compd 475:518–523. doi: 10.1016/j.jallcom.2008.07.078 CrossRefGoogle Scholar
  53. Takeuchi ES, Piliero P (1987) Lithium/silver vanadium oxide batteries with various silver to vanadium ratios. J Power Sources 21:133–141. doi: 10.1016/0378-7753(87)80044-7 CrossRefGoogle Scholar
  54. Takeuchi KJ, Marschilok AC, Davis SM, Leising RA, Takeuchi ES (2001) Silver vanadium oxides and related battery applications. Coord Chem Rev 219-221:283–310. doi: 10.1016/S0010-8545(01)00340-X CrossRefGoogle Scholar
  55. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367. doi: 10.1038/35104644 CrossRefGoogle Scholar
  56. Tian B, Xie P, Kempa TJ, Bell DC, Lieber CM (2009) Single-crystalline kinked semiconductor nanowire superstructures. Nat Nanotechnol 4:824–829. doi: 10.1038/nnano.2009.304 CrossRefGoogle Scholar
  57. Tian H, Wachs IE, Briand LE (2005) Comparison of UV and visible Raman spectroscopy of bulk metal molybdate and metal vanadate catalysts. J Phys Chem B 109:23491–23499. doi: 10.1021/jp053879j CrossRefGoogle Scholar
  58. Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4301. doi: 10.1021/cr020731c CrossRefGoogle Scholar
  59. Xie J, Cao X, Li J, Zhan H, Xia Y, Zhou Y (2005) Application of ultrasonic irradiation to the sol-gel synthesis of silver vanadium oxides. Ultrason Sonochem 12:289–293. doi: 10.1016/j.ultsonch.2004.01.041 CrossRefGoogle Scholar
  60. Xiong J, Han C, Li Z, Dou S (2015) Effects of nanostructure on clean energy: big solutions gained from small features. Sci Bull 60:2083–2090. doi: 10.1007/s11434-015-0972-z CrossRefGoogle Scholar
  61. Yang YM, Liu YY, Huang BB, Zhang R, Dai Y, Qin XY, Zhang XY (2014) Enhanced visible photocatalytic activity of a BiVO4@beta-AgVO3 composite synthesized by an in situ growth method. RSC Adv 4:20058–20061. doi: 10.1039/c4ra02110j CrossRefGoogle Scholar
  62. Yarwood J (1979) Spectroscopic studies of intermolecular forces in dense phases. Annu Rep Prog Chem 79:99–130. doi: 10.1039/PC9797600099 CrossRefGoogle Scholar
  63. Yeredla RR, Xu H (2008) An investigation of nanostructured rutile and anatase plates for improving the photosplitting of water. Nanotechnology 19:055706. doi: 10.1088/0957-4484/19/05/055706 CrossRefGoogle Scholar
  64. Yoo HD, Markevich E, Salitra G, Sharon D, Aurbach D (2014) On the challenge of developing advanced technologies for electrochemical energy storage and conversion. Mater Today 17:110–121. doi: 10.1016/j.mattod.2014.02.014 CrossRefGoogle Scholar
  65. Yu J, Kudo A (2006) Effects of structural variation on the photocatalytic performance of hydrothermally synthesized BiVO4. Adv Funct Mater 16:2163–2169. doi: 10.1002/adfm.200500799 CrossRefGoogle Scholar
  66. Zhang Q, Wang W, Goebl J, Yin Y (2009) Self-templated synthesis of hollow nanostructures. Nano Today 4:494–507. doi: 10.1016/j.nantod.2009.10.008 CrossRefGoogle Scholar
  67. Zhang S, Li W, Li C, Chen J (2006) Synthesis, characterization, and electrochemical properties of Ag2V4O11 and AgVO3 1-D nano/microstructures. J Phys Chem B 110:24855–24863. doi: 10.1021/jp065478p CrossRefGoogle Scholar
  68. Zhou Q, Shao M, Que R, Cheng L, Zhuo S, Tong Y, Lee ST (2011) Silver vanadate nanoribbons: a label-free bioindicator in the conversion between human serum transferrin and apotransferrin via surface-enhanced Raman scattering. Appl Phys Lett 98:193110–193112. doi: 10.1063/1.3590712 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • W. Klockner
    • 1
  • R. M. Yadav
    • 2
    • 3
  • J. Yao
    • 2
    • 4
  • S. Lei
    • 2
  • A. Aliyan
    • 5
  • J. Wu
    • 2
  • A. A. Martí
    • 2
    • 5
  • R. Vajtai
    • 2
  • P. M Ajayan
    • 2
  • J. C. Denardin
    • 1
  • D. Serafini
    • 1
  • F. Melo
    • 1
  • D. P. Singh
    • 1
    Email author
  1. 1.Departamento de FisicaUniversidad de Santiago de ChileSantiagoChile
  2. 2.Department of Materials Science and NanoEngineeringRice UniversityHoustonUSA
  3. 3.Department of PhysicsVSSD CollegeKanpurIndia
  4. 4.Department of Chemistry and Chemical EngineeringChongqing UniversityChongqingChina
  5. 5.Department of ChemistryRice UniversityHoustonUSA

Personalised recommendations