Advertisement

Computational study of titania-ceria hybrid clusters for electrochemical applications

  • Abdul MajidEmail author
  • Maryam Bibi
Research Paper

Abstract

First principles calculations were carried out to investigate the electronic and optical properties with spotlight on excitation spectra and circular dichroism (CD) spectra of Ce2O4, Ti2O4 and the hybrid cluster CeTiO4. The calculated UV/Vis spectrum and CD spectrum for Ce2O4 and Ti2O4 clusters found in respective IR and UV regions is shifted to visible region in case of the hybrid cluster. The major singlet-singlet-allowed transitions for the structures are discussed in detail. The hybrid cluster is optically active in the visible region and simultaneously contains titania’s appealing catalytic properties as well as ceria’s attractive properties for solid state electrolytes. The results point to possibility of adjustable band edges for potential applications in water splitting, coupling semiconductors applicable in dye-sensitized solar cells and other electrochemical devices.

Keywords

Density functional theory Molecular clusters Excitation Circular dichorism Modeling and simulation 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Akbari-Fakhrabadi A et al (2015) Preparation of nanosized yttrium doped CeO2 catalyst used for photocatalytic application. J Saudi Chem Soc 19:505–510. doi: 10.1016/j.jscs.2015.06.003 CrossRefGoogle Scholar
  2. Berova N, Nakanishi K, Woody RW (2000) Circular dichroism: principles and applications, 2nd edn. John Wiley & Sons, HobokenGoogle Scholar
  3. Bryan JD, Gamelin DR (2005) Doped semiconductor nanocrystals: synthesis, characterization, physical properties, and applications progress in inorganic chemistry. Prog Inorg Chem 54:47. doi: 10.1002/0471725560.ch2 CrossRefGoogle Scholar
  4. Chandrakumar KRS, Pal S (2002) The concept of density functional theory based descriptors and its relation with the reactivity of molecular systems: a semi-quantitative study. Int J Mol Sci 3:324–337. doi: 10.3390/i3040324 CrossRefGoogle Scholar
  5. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959. doi: 10.1021/cr0500535 CrossRefGoogle Scholar
  6. Chiodo L et al (2011) Structure, electronic, and optical properties of TiO2 atomic clusters: an ab initio study. J Chem Phys 135:244704. doi: 10.1063/1.3668085 CrossRefGoogle Scholar
  7. Cortés-Arriagada D, Toro LA (2016) Insights into the use of Au19Cu and Au19Pd clusters for adsorption of trivalent arsenic. Theor Chem Accounts 135:52. doi: 10.1007/s00214-016-1825-9 CrossRefGoogle Scholar
  8. El Khalifi M, Picaud F, Bizi M (2016) Electronic and optical properties of CeO2 from first principles calculations. Anal Methods 8:5045–5052. doi: 10.1039/C6AY00374E CrossRefGoogle Scholar
  9. Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108:845–910. doi: 10.1021/cr040090g CrossRefGoogle Scholar
  10. Fischer SA, Isborn CM, Prezhdo OV (2011) Excited states and optical absorption of small semiconducting clusters: dopants, defects and charging. Chem Sci 2:400. doi: 10.1039/C0SC00626B CrossRefGoogle Scholar
  11. Ghanty TK, Ghosh SK (1993) Correlation between hardness, polarizability, and size of atoms, molecules, and clusters. J Phys Chem 97:4951. doi: 10.1021/j100121a015 CrossRefGoogle Scholar
  12. Cakırl D, Gulseren O (2012) Ab initio study of neutral (TiO2) n clusters and their interactions with water and transition metal atoms. J Phys Condens Matter 24:305301. doi: 10.1088/0953-8984/24/30/305301 CrossRefGoogle Scholar
  13. Guosheng S, Deng Q, Wan L, Guo M, Xia X, Gao Y (2010) Molecular design of TiO2 for gigantic red shift via sublattice substitution. J Nanosci Nanotechnol Journal of Nanoscience and Nanotechnology 10:7092–7096. doi: 10.1166/jnn.2010.2767 CrossRefGoogle Scholar
  14. Gupta SM, Tripathi M (2011) A review of TiO2 nanoparticles. Chin Sci Bull 56:1639. doi: 10.1007/s11434-011-4476-1 CrossRefGoogle Scholar
  15. Humayun M, Yang Q, Raziq F, Yan R, Li Z, Zhang X, Jing L (2016) Exceptional visible-light activities of TiO2-coupled N-doped porous perovskite LaFeO3 for 2,4-dichlorophenol decomposition and CO2 conversion. Environ Sci Technol 50:13600–13610. doi: 10.1021/acs.est.6b04958 CrossRefGoogle Scholar
  16. Ippolito D, L, Hansen KK (2017) Effect of CeO2 addition on hybrid direct carbon fuel cell performance. J Electrochem Soc 164:332–338. doi: 10.1149/2.0981704jes
  17. Jackson SD, Hargreaves JSJ (2009) Metal oxide catalysis. Weinheim: Wiley-VCHGoogle Scholar
  18. Johnston RL (2002) Atomic and molecular clusters. Taylor & Francis, London, 2002. doi: 10.1201/9781420055771
  19. Kim S, Hwang S-J, Choi W (2005) Visible light active platinum-ion-doped TiO2 photocatalyst. J Phys Chem B 109:24260–24267. doi: 10.1021/jp055278y CrossRefGoogle Scholar
  20. van Lenthe E, Baerends EJ (2003) Optimized slater-type basis sets for the elements 1–118. J Comput Chem 24:1142. doi: 10.1002/jcc.10255 CrossRefGoogle Scholar
  21. Liu X, Lian X, Li Y, Zhang N (2012) Preparation of a novel fluorescent nanocomposite: CeO 2/ANS by a simple method. Materials Science-Poland 30:70–73. doi: 10.2478/s13536-012-0011-6 CrossRefGoogle Scholar
  22. Liu HR et al (2013) Prediction of (TiO2)x(Cu2O)y alloys for photoelectrochemical water splitting. Phys Chem Chem Phys 15:1778–1781. doi: 10.1039/C2CP44484D CrossRefGoogle Scholar
  23. Machida M, Kawada T, Fujii H, Hinokuma S (2015) The role of CeO2 as a gateway for oxygen storage over CeO2-grafted Fe2O3 composite materials. J Phys Chem C 119:24932–24941. doi: 10.1021/acs.jpcc.5b09876 CrossRefGoogle Scholar
  24. Majid A, Maryam B (2017) First principles study of vibrational dynamics of ceria-titania hybrid clusters. J Nanopart Res 19:122. doi: 10.1007/s11051-017-3823-9 CrossRefGoogle Scholar
  25. Mehta M et al (2016) Hydrogen treated anatase TiO2: a new experimental approach and further insights from theory. J Mater Chem A 4:2670. doi: 10.1039/c5ta07133 CrossRefGoogle Scholar
  26. Méndez-Medrano MG et al (2016) Surface modification of TiO2 with Ag nanoparticles and CuO nanoclusters for application in photocatalysis. J Phys Chem C 120:5143–5154. doi: 10.1021/acs.jpcc.5b10703 CrossRefGoogle Scholar
  27. Montini T, Melchionna M, Monai M, Fornasiero P (2016) Fundamentals and catalytic applications of CeO2-based materials. Chem Rev 116:5987–6041. doi: 10.1021/acs.chemrev.5b00603 CrossRefGoogle Scholar
  28. Park, HG., Kim, J.I., Kang, M. et al. (2014) The effect of metal-doped TiO2 nanoparticles on zebrafish embryogenesis. Mol Cell Toxicol. (2014) 10:293. DOI: 10.1007/s13273-014-0033-8
  29. Pelaez M et al (2012) A review on the visible light active titanium dioxide. Applied Catalysis B:Environmental 125:331. doi: 10.1016/j.apcatb.2012.05.036 CrossRefGoogle Scholar
  30. Rana TH et al (2013) Ab-initio study of free standing TiO2 clusters: stability and magnetism. J Appl Phys 113. doi: 10.1063/1.4799616
  31. Rehman S, Ruh U, Butt AM, Gohar ND (2009) Strategies of making TiO2 and ZnO visible light active. J Hazard Mater 170:560–569. doi: 10.1016/j.jhazmat.2009.05.064 CrossRefGoogle Scholar
  32. Saravanan R, Joicy S, Gupta VK, Narayanan V, Stephen A (2013) Visible light induced degradation of methylene blue using CeO2/V2O5 and CeO2/CuO catalysts. Mater Sci Eng C 33:4725–4731. doi: 10.1016/j.msec.2013.07.034 CrossRefGoogle Scholar
  33. Shi H, Hussain T, Ahuja R, Kang TW, Luo W (2016) Role of vacancies, light elements and rare-earth metals doping in CeO2. Sci Rep 6:31345. doi: 10.1038/srep31345 CrossRefGoogle Scholar
  34. Te Velde G (2001) Chemistry with ADF. J Comp Chem 22:931–967. doi: 10.1002/jcc.1056 CrossRefGoogle Scholar
  35. Tsuneda T, Song J-W, Suzuki S, Hirao K (2010) On Koopmans’ theorem in density functional theory. J Chem Phys 133:174101. doi: 10.1063/1.3491272 CrossRefGoogle Scholar
  36. Tsunekawa S, Wang J-T, Kawazoe Y (2006) Lattice constants and electron gap energies of nano- and subnano-sized cerium oxides from the experiments and first-principles calculations. J Alloys Compd 408:1145–1148. doi: 10.1016/j.jallcom.2004.12.140 CrossRefGoogle Scholar
  37. Wales DJ, Scheraga HA (1999) Global optimization of clusters, crystals, and biomolecules. Science 285:1368–1372. doi: 10.1126/science.285.5432.1368 CrossRefGoogle Scholar
  38. Zhao X, Mao D, Li D, Liao B et al (2015) Synthesis of Ag ion-implanted TiO2 thin films for antibacterial application and photocatalytic performance. J Hazard Mater 15(299):59–66. doi: 10.1016/j.jhazmat.2015.05.014 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of GujratGujratPakistan
  2. 2.Office of Research, Innovation and CommercializationUniversity of GujratGujratPakistan

Personalised recommendations