Advertisement

Surfactant-assisted production of TbCu2 nanoparticles

  • M. de la Fuente Rodríguez
  • J. I. Espeso
  • J. A. González
  • J. Rodríguez Fernández
  • D. P. Rojas
  • L. Rodríguez Fernández
  • A. Garcia-Arribas
  • M. L. Fdez-Gubieda
  • C. Echevarria-Bonet
  • É. A. Périgo
  • A. Michels
  • L. Fernández Barquín
Research Paper

Abstract

The production of surfactant-assisted metallic nanoparticles of TbCu2 has been achieved by the combination of high-energy ball milling in tungsten carbide containers and the use of oleic acid (C18H34O2) and heptane (C7H16). The alloys were first produced in bulk pellets by arc melting and subsequently milled for only 2 and 5 h in oleic acid (15 and 30% mass weight). The powders consist of an ensemble of nanoparticles with a TbCu2 lattice cell volume of ≈215 Å3, an average particle diameter between 9 and 12 nm and inhomogeneous lattice strain of 0.2–0.4%, as deduced from X-ray diffraction data. The nanometric sizes of the crystals with defined lattice planes are close to those obtained by transmission electron microscopy. Raman spectroscopy shows the existence of inelastic peaks between 1000 and 1650 cm−1, a characteristic of C18H34O2. The magnetisation shows a peak at the antiferromagnetic-paramagnetic transition with Néel temperatures around 48 K (below that of bulk alloy) and a distinctive metamagnetic transition at 5 K up to 40 K. The Curie-Weiss behaviour above the transition reveals effective Bohr magneton numbers (≈9.1–9.9 μB) which are close to what is expected for the free Tb3+ ion using Hund’s rules. The metamagnetic transition is slightly augmented with respect to the bulk value, reaching H = 24.5 kOe by the combined effect of the size reduction and the lattice strain increase and the increase of magnetic disorder. At low temperatures, there is irreversibility as a result of the existing magnetic disorder. The moment relaxation follows an Arrhenius model with uncompensated Tb moments, with activation energies between 295 and 326 K and pre-exponential factors between 10−11 and 10−13 s. The results are interpreted as a consequence of the existence of a diamagnetic surfactant which drastically decreases the magnetic coupling between interparticle moments.

Keywords

Rare Earth binary nanoparticles Surfactant-assisted production Superantiferromagnetism Arrhenius relaxation Synthesis 

Notes

Acknowledgments

This work has been supported by Spanish MINECO grant MAT2014-55049-C2-R. M. de la Fuente Rodríguez work is also supported by FPI (BES-2012-058722).

Compliance with ethical standards

The authors declare that they have no conflict of interest.

References

  1. Akdogan NG, Hadjipanayis GC, Sellmyer DJ (2009) J Appl Phys 105:07A710CrossRefGoogle Scholar
  2. Alba Venero D, Fernández Barquín L, Alonso J, Fdez-Gubieda ML, Rodríguez Fernández L, Boada R, Chaboy J (2013) J Phys Condens Matter 25:276001CrossRefGoogle Scholar
  3. Andersson MS, Mathieu R, Su Seong L, Normile PS, Singh G, Nordblad P, De Toro JA (2015) Nanotechnology 26:475703CrossRefGoogle Scholar
  4. Bedanta S, Kleemann W (2009) J Phys D Appl Phys 42:013001CrossRefGoogle Scholar
  5. Berry CC, Curtis ASG (2003) J Phys D Appl Phys 36:R198CrossRefGoogle Scholar
  6. Chandra S, Khurshid H, Li W, Hadjipanayis GC, Phan MH, Srikanth H (2012) Phys Rev B 86:014426CrossRefGoogle Scholar
  7. Coey J M D (2010) Magnetism and magnetic materials (Cambridge University press)Google Scholar
  8. Cuellar FA, Liu YH, Salafranca J, Nemes N, Iborra E, Sanchez-Santolino G, Varela M, Garcia Hernandez M, Freeland JW, Zhernenkov M, Fitzsimmons MR, Okamoto S, Pennycook SJ, Bibes M, Barthélémy A, te Velthuis SGE, Sefrioui Z, Leon C, Santamaria J (2014) Nat Commun 5:52153CrossRefGoogle Scholar
  9. De Gelder J, De Gussem K, Vandenabeele P, Moens L (2007) J Raman Spectrosc 38:1133CrossRefGoogle Scholar
  10. De Paula VG, da Silva LM, dos Santos AO, Lang R, Otubo L, Coelho AA, Cardoso LP (2016) Phys Rev B 93:094427CrossRefGoogle Scholar
  11. Dormann JL, Bessais L, Fiorani D (1988) J Phys C Solid State Phys 21:2015CrossRefGoogle Scholar
  12. Echevarria-Bonet C, Rojas DP, Espeso JI, Rodríguez Fernández J, Rodríguez Fernández J, Gorria P, Blanco JA, Fdez-Gubieda ML, Bauer E, André G, Fernández Barquín L (2013) Phys Rev B 87:180407(R)CrossRefGoogle Scholar
  13. Echevarria-Bonet C, Rojas DP, Espeso JI, Rodríguez Fernández J, de la Fuente RM, Fernández Barquín L, Rodríguez Fernández L, Gorria P, Blanco JA, Fdez-Gubieda ML, Bauer E, Damay F (2015) J Phys Condens Matter 27:496002CrossRefGoogle Scholar
  14. Estrader M, López-Ortega A, Estradé S, Golosovsky IV, Salazar-Alvarez G, Vasilakaki M, Trohidou KN, Varela M, Stanley DC, Pechan MJ, Keavney DJ, Peiró F, Surinach S, Baró MD, Nogués J (2013) Nat Commun 4:2960CrossRefGoogle Scholar
  15. Gleiter H, Schimmel T, Hahn H (2014) Nano Today 9:17–68CrossRefGoogle Scholar
  16. Hansen MF, Koch CB, Mørup S (2000) Phys Rev B 62:1124CrossRefGoogle Scholar
  17. Kilcoyne SH, Cywinski R (1995) J Magn Magn Mater 1466:140–144Google Scholar
  18. Li WF, Hu XC, Cui BZ, Yang JB, Han JZ, Hadjipanayis GC (2013) J Magn Magn Mater 339:71CrossRefGoogle Scholar
  19. Lu AH, Salabas EL, Schuth F (2007) Angew Chem Int Edn Engl 46:1222CrossRefGoogle Scholar
  20. Luong N H and Franse J (1995) Handbook of magnetic materials: magnetic properties of rare Earth-Cu2 compounds. In: Buschow K H J (ed) vol 8. Elsevier, Amsterdam, p 415Google Scholar
  21. Makhlouf Salah A, Parker FT, Berkowitz AE (1997) Phys Rev B 55:R14717CrossRefGoogle Scholar
  22. Morales MA, Williams DS, Shand PM, Stark C, Pekarek TM, Yue LP, Petkov V, Leslie-Pelecky DL (2004) Phys Rev B 70:184407CrossRefGoogle Scholar
  23. Moriarty P (2001) Rep Prog Phys 64:297CrossRefGoogle Scholar
  24. Mørup S, Madsen MB, Franck J, Villadsen J, Koch CJW (1983) J Magn Magn Mater 40:163CrossRefGoogle Scholar
  25. Mørup S, Hansen MF, Frandsen C (2011) Comprehensive nanoscience and Nanotechnology, vol 1. Academic, Oxford, p 437Google Scholar
  26. Nogués J, Sort J, Langlais V, Skumryev V, Suriñach S, Muñoz JS, Baró MD (2005) Phys Rep 422:65CrossRefGoogle Scholar
  27. Peddis D, Rinaldi D, Ennas G, Scano A, Agostinelli E, Fiorani D (2012) Phys Chem Chem Phys 14:3162CrossRefGoogle Scholar
  28. Rinaldi-Montes N, Gorria P, Martínez-Blanco D, Fuertes AB, Fernández Barquín L, Puente-Orench I, Blanco JA (2015) Nanotechnology 26:305705CrossRefGoogle Scholar
  29. Rodríguez-Carvajal J (1993) Physica B 192:55CrossRefGoogle Scholar
  30. Rojas DP, Fernández Barquín L, Rodríguez Fernández J, Espeso JI, Gómez Sal JC (2007) J Phys Condens Matter 19:186214CrossRefGoogle Scholar
  31. Rojas DP, Fernández Barquín L, Echevarria-Bonet C, Rodríguez Fernández J (2012) J Nanosci Nanotechnol 12:7482CrossRefGoogle Scholar
  32. Sánchez-Valdés CF, Ibarra-Gaytán PJ, Sánchez Llamazares JL, Ávalos-Borja M, Álvarez-Alonso P, Gorria P, Blanco JA (2014) Appl Phys Lett 104:212401CrossRefGoogle Scholar
  33. Schneider CA, Rasband WS, Eliceiri KW (2012) Nat Methods 9:671CrossRefGoogle Scholar
  34. Simeonidis K, Sarafidis C, Papastergiadis E, Angelakeris M, Tsiaoussis I, Kalogirou O (2011) Intermetallics 19:589CrossRefGoogle Scholar
  35. Stark WJ, Stoessel PR, Wohlleben W, Hafner A (2015) Chem Soc Rev 44:5793–5805CrossRefGoogle Scholar
  36. Tartaj P, Morales MD, Veintemillas-Verdaguer S, Gonzalez-Carreno T, Serna CJ (2003) J Phys D Appl Phys 36(13):R182CrossRefGoogle Scholar
  37. Ullah M, Eaqub AM, Hamid SBA (2014) Rev Adv Mater Sci 37:1Google Scholar
  38. Wang Y, Li Y, Rong C, Liu JP (2007) Nanotechnology 18:465701CrossRefGoogle Scholar
  39. Yadav TP, Yadav RM, Singh DP (2012) Nanosci Nanotechnol 2:22CrossRefGoogle Scholar
  40. Zhou GF, Bakker H (1995) Phys Rev B 52:9437CrossRefGoogle Scholar
  41. Zysler RD, Fiorani D, Testa AM, Suber L, Agostinelli E, Godinho M (2003) Phys Rev B 68 (21):212408Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • M. de la Fuente Rodríguez
    • 1
  • J. I. Espeso
    • 1
  • J. A. González
    • 1
  • J. Rodríguez Fernández
    • 1
  • D. P. Rojas
    • 2
  • L. Rodríguez Fernández
    • 3
  • A. Garcia-Arribas
    • 4
  • M. L. Fdez-Gubieda
    • 4
  • C. Echevarria-Bonet
    • 5
  • É. A. Périgo
    • 6
  • A. Michels
    • 7
  • L. Fernández Barquín
    • 1
  1. 1.Dpto. CITIMACUniversidad de CantabriaSantanderSpain
  2. 2.Dpto. Estructuras y Física de Edificación. ETSAMUniversidad Politécnica de MadridMadridSpain
  3. 3.SERMET, Universidad de CantabriaSantanderSpain
  4. 4.Dpto. Electricidad y ElectrónicaUniversidad País Vasco/EHUBilbaoSpain
  5. 5.BCMaterials, Bizkaia Science and Technology ParkDerioSpain
  6. 6.ABB Corporate Research CenterRaleighUSA
  7. 7.Physics and Materials Science Research UnitUniversity of LuxembourgLuxembourgGrand Duchy of Luxembourg

Personalised recommendations