Molecular dynamics simulations of the graphene sheet aggregation in dodecane

  • Shenghui Chen
  • Shuangqing Sun
  • Chunling Li
  • Charles U. PittmanJr
  • Thomas E. Lacy
  • Songqing Hu
  • Steven R. Gwaltney
Research Paper

Abstract

Molecular dynamics simulations are used to investigate the aggregation and behavior of two parallel graphene sheets (22.0–64.0 Å in length) in dodecane. The dodecane layer formed on the graphene surface leads to an energy barrier which slows the rate of the graphene aggregation process when the two sheets are totally separated by dodecane molecules. The graphene sheets aggregate in dodecane only when portions of one graphene sheet are in contact with another sheet. The aggregation rate depends on the combined structures of the two graphene sheets. The aggregation rate for two parallel graphene sheets in half contact with one another is constant since the relative sheet geometry and spacing are nearly constant in the transition region between sheets where dodecane molecules are being displaced during aggregation. The aggregation rate for partially overlapped graphene sheets becomes progressively slower as aggregation continues since the area not overlapped decreases as the aggregation proceeds.

Keywords

Graphene sheets Dodecane Aggregation Molecular dynamics Modeling and simulation Graphene-based composites 

Notes

Acknowledgements

We wish to thank the High Performance Computing Collaboratory (HPC2) at Mississippi State University for computer time.

Compliance with ethical standards

Funding

This work was supported by the National Natural Science Foundation of China (grant number 51201183, 51501226) and the Fundamental Research Funds for the Central Universities (grant number 14CX02221A, 15CX08009A, and 16CX05017A).

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Arash B, Wang Q, Varadan VK (2014) Mechanical properties of carbon nanotube/polymer composites. Scientific Reports 4:6479. doi: 10.1038/srep06479 CrossRefGoogle Scholar
  2. Asche TS, Behrens P, Schneider AM (2016) Validation of the COMPASS force field for complex inorganic–organic hybrid polymers. J Sol-Gel Sci Technol 81:195–204. doi: 10.1007/s10971-016-4185-y CrossRefGoogle Scholar
  3. Chen S, Sun S, Li C, Pittman CU Jr, Lacy TE, Hu S, Gwaltney SR (2016) Behavior of protruding lateral plane graphene sheets in liquid dodecane: molecular dynamics simulations. J Nanopart Res 18:317. doi: 10.1007/s11051-016-3645-1 CrossRefGoogle Scholar
  4. Eda G, Chhowalla M (2009) Graphene-based composite thin films for electronics. Nano Lett 9:814–818. doi: 10.1021/nl8035367 CrossRefGoogle Scholar
  5. Fouquet P, Johnson MR, Hedgeland H, Jardine AP, Ellis J, Allison W (2009) Molecular dynamics simulations of the diffusion of benzene sub-monolayer films on graphite basal plane surfaces. Carbon 47:2627–2639. doi: 10.1016/j.carbon.2009.05.018 CrossRefGoogle Scholar
  6. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191. doi: 10.1038/nmat1849 CrossRefGoogle Scholar
  7. Hu K, Kulkarni DD, Choi I, Tsukruk VV (2014) Graphene-polymer nanocomposites for structural and functional applications. Prog Polym Sci 39:1934–1972. doi: 10.1016/j.progpolymsci.2014.03.001 CrossRefGoogle Scholar
  8. Huang X, Qi X, Boey F, Zhang H (2012) Graphene-based composites. Nature 41(7100):666–686. doi: 10.1039/C1CS15078B Google Scholar
  9. Jang C, Lacy TE, Gwaltney SR, Toghiani H, Pittman CU Jr (2013) Interfacial shear strength of cured vinyl ester resin-graphite nanoplatelet from molecular dynamics simulations. Polymer 54:3282–3289. doi: 10.1016/j.polymer.2013.04.035 CrossRefGoogle Scholar
  10. Jang C, Nouranian S, Lacy TE, Gwaltney SR, Toghiani H, Pittman CU Jr (2012) Molecular dynamics simulations of oxidized vapor-grown carbon nanofiber surface interactions with vinyl ester resin monomers. Carbon 50:748–760. doi: 10.1016/j.carbon.2011.09.013 CrossRefGoogle Scholar
  11. Jiang Y, Li H, Li Y, Yu H, Liew KM, He Y, Liu X (2011) Helical encapsulation of graphene nanoribbon into carbon nanotube. ACS Nano 5:2026–2133. doi: 10.1021/nn103317u CrossRefGoogle Scholar
  12. Kuilla T, Bhadra S, Yao DH, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375. doi: 10.1016/j.progpolymsci.2010.07.005 CrossRefGoogle Scholar
  13. Lee C, Wei XD, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388. doi: 10.1126/science.1157996 CrossRefGoogle Scholar
  14. Li D, Müller MB, Gilje S, Kane RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105. doi: 10.1038/nnano.2007.451 CrossRefGoogle Scholar
  15. Li Y, Sun F, Li H (2011) Helical wrapping and insertion of graphene nanoribbon to single-walled carbon nanotube. J Phys Chem C 115:18459–18467. doi: 10.1021/jp205210x CrossRefGoogle Scholar
  16. Lv C, Xue Q, Xia D, Ma M, Xie J, Chen H (2010) Effect of chemisorption on the interfacial bonding characteristics of graphene−polymer composites. J Phys Chem C 114:6588–6594. doi: 10.1021/jp100110n CrossRefGoogle Scholar
  17. Martinez CR, Iverson BL (2012) Rethinking the term “pi-stacking”. Chem Sci 3:2191–2201. doi: 10.1039/c2sc20045g CrossRefGoogle Scholar
  18. Mittal G, Dhand V, Rhee KY, Park S-J, Lee WR (2015) A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J Ind Eng Chem 21:11–25. doi: 10.1016/j.jiec.2014.03.022 CrossRefGoogle Scholar
  19. Nouranian S, Jang C, Lacy TE, Gwaltney SR, Toghiani H, Pittman CU Jr (2011) Molecular dynamics simulations of vinyl ester resin monomer interactions with a pristine vapor-grown carbon nanofiber and their implications for composite interphase formation. Carbon 49:3219–3232. doi: 10.1016/j.carbon.2011.03.047 CrossRefGoogle Scholar
  20. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669. doi: 10.1126/science.1102896 CrossRefGoogle Scholar
  21. Pan F, Peng F, Jiang Z (2007) Diffusion behavior of benzene/cyclohexane molecules in poly(vinyl alcohol)-graphite hybrid membranes by molecular dynamics simulation. Chem Eng Sci 62:703–710. doi: 10.1016/j.ces.2006.07.046 CrossRefGoogle Scholar
  22. Paton RS, Goodman JM (2009) Hydrogen bonding and π-stacking: how reliable are force fields? A critical evaluation of force field descriptions of nonbonded interactions. J Chem Inf Model 49:944–955. doi: 10.1021/ci900009f CrossRefGoogle Scholar
  23. Rafiee MA, Rafiee J, Srivastava I, Wang Z, Song H, Yu Z-Z, Yu N (2010) Fracture and fatigue in graphene nanocomposites. Small 6:179–183. doi: 10.1002/smll.200901480 CrossRefGoogle Scholar
  24. Sadasivuni KK, Ponnamma D, Thomas S, Grohens Y (2014) Evolution from graphite to graphene elastomer composites. Prog Polym Sci 39:749–780. doi: 10.1016/j.progpolymsci.2013.08.003 CrossRefGoogle Scholar
  25. Shao G, Lu Y, Wu F, Yang C, Zeng F, Wu Q (2012) Graphene oxide: the mechanisms of oxidation and exfoliation. J Mater Sci 47:4400–4409. doi: 10.1007/s10853-012-6294-5 CrossRefGoogle Scholar
  26. Shih CJ, Lin S, Strano MS, Blankschtein D (2010) Understanding the stabilization of liquid-phase-exfoliated graphene in polar solvents: molecular dynamics simulations and kinetic theory of colloid aggregation. J Am Chem Soc 132:14638–14648. doi: 10.1021/ja1064284 CrossRefGoogle Scholar
  27. Shokrieh MM, Shokrieh Z, Hashemianzadeh SM (2014) A novel combined molecular dynamics–micromechanics method for modeling of stiffness of graphene/epoxy nanocomposites with randomly distributed graphene. Mater Design 64:96–101. doi: 10.1016/j.matdes.2014.07.031 CrossRefGoogle Scholar
  28. Si Y, Samulski ET (2008a) Synthesis of water soluble graphene. Nano Lett 8:1679–1682. doi: 10.1021/nl080604h CrossRefGoogle Scholar
  29. Si Y, Samulski ET (2008b) Exfoliated graphene separated by platinum nanoparticles. Chem Mater 20:6792–6797. doi: 10.1021/cm801356a CrossRefGoogle Scholar
  30. Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S (2011) Graphene based materials: past, present and future. Prog Mater Sci 56:1178–1271. doi: 10.1016/j.pmatsci.2011.03.003 CrossRefGoogle Scholar
  31. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286. doi: 10.1038/nature04969 CrossRefGoogle Scholar
  32. Sun H (1998) COMPASS: an ab initio force-field optimized for condensed-phase applications: overview with details on alkane and benzene compounds. J Phys Chem B 102:7338–7364. doi: 10.1021/jp980939v CrossRefGoogle Scholar
  33. Tien C-P, Teng H (2010) Polymer/graphite oxide composites as high-performance materials for electric double layer capacitors. J Power Sources 195:2414–2418. doi: 10.1016/j.jpowsour.2009.11.001 CrossRefGoogle Scholar
  34. Wei T, Luo G, Fan Z, Zheng C, Yan J, Yao C, Li W, Zhang C (2009) Preparation of graphene nanosheet/polymer composites using in situ reductionextractive dispersion. Carbon 47:2290–2299. doi: 10.1016/j.carbon.2009.04.030 CrossRefGoogle Scholar
  35. Wu TT, Xue QZ, Li XF, Tao YH, Jin YK, Ling CC, Lu SF (2016) Extraction of kerogen from oil shale with supercritical carbon dioxide: molecular dynamics simulations. J of Supercritical Fluids 107:499–506. doi: 10.1016/j.supflu.2015.07.005 CrossRefGoogle Scholar
  36. Yang SY, Lin WN, Huang YL, Tien HW, Wang JY, Ma CCM, Li SML, Wang YS (2011) Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites. Carbon 49:793–803. doi: 10.1016/j.carbon.2010.10.014 CrossRefGoogle Scholar
  37. Zacharia R, Ulbricht H, Hertel T (2004) Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons. Phys Rev B 69:155406. doi: 10.1103/PhysRevB.69.155406 CrossRefGoogle Scholar
  38. Zhang J, Jiang D (2014) Molecular dynamics simulation of mechanical performance of graphene/graphene oxide paper based polymer composites. Carbon 67:784–791. doi: 10.1016/j.carbon.2013.10.078 CrossRefGoogle Scholar
  39. Zhang T, Xue Q, Zhang S, Dong M (2012) Theoretical approaches to graphene and graphene-based materials. Nano Today 7:180–200. doi: 10.1016/j.nantod.2012.04.006 CrossRefGoogle Scholar
  40. Zhao Y, Hu Z (2013) Graphene in ionic liquids: collective van der Waals interaction and hindrance of self-assembly pathway. J Phys Chem B 117:10540–10547. doi: 10.1021/jp405660d CrossRefGoogle Scholar
  41. Zheng QB, Xue QZ, Yan KY, Hao LZ, Li Q, Gao XL (2007) Investigation of molecular interactions between SWNT and polyethylene/polypropylene/polystyrene/polyaniline molecules. J Phys Chem C 111:4628–4635. doi: 10.1021/jp066077c CrossRefGoogle Scholar
  42. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924. doi: 10.1002/adma.201001068 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Shenghui Chen
    • 1
  • Shuangqing Sun
    • 1
  • Chunling Li
    • 1
  • Charles U. PittmanJr
    • 2
  • Thomas E. Lacy
    • 3
  • Songqing Hu
    • 1
    • 4
  • Steven R. Gwaltney
    • 2
  1. 1.College of ScienceChina University of PetroleumQingdaoPeople’s Republic of China
  2. 2.Department of ChemistryMississippi State UniversityMississippi StateUSA
  3. 3.Department of Aerospace EngineeringMississippi State UniversityMississippi StateUSA
  4. 4.Key Laboratory of New Energy Physics & Materials ScienceUniversities of Shandong (China University of Petroleum)QingdaoChina

Personalised recommendations