Improved photocatalytic degradation of Orange G using hybrid nanofibers

  • Mpho Ledwaba
  • Nkosiphile Masilela
  • Tebello Nyokong
  • Edith Antunes
Research Paper


Functionalised electrospun polyamide-6 (PA-6) nanofibres incorporating gadolinium oxide nanoparticles conjugated to zinc tetracarboxyphenoxy phthalocyanine (ZnTCPPc) as the sensitizer were prepared for the photocatalytic degradation of Orange G. Fibres incorporating the phthalocyanine alone or a mixture of the nanoparticles and phthalocyanine were also generated. The singlet oxygen-generating ability of the sensitizer was shown to be maintained within the fibre mat, with the singlet oxygen quantum yields increasing upon incorporation of the magnetic nanoparticles. Consequently, the rate of the photodegradation of Orange G was observed to increase with an increase in singlet oxygen quantum yield. A reduction in the half-lives for the functionalised nanofibres was recorded in the presence of the magnetic nanoparticles, indicating an improvement in the efficiency of the degradation process.

Graphical abstract


Zinc tetracarboxyphenoxy phthalocyanine Gadolinium oxide nanoparticles Electrospinning Orange G Nanocomposites 



This study was funded by National Research Foundation Incentive and CPRR grants, South Africa (Grant number 93474), University of the Western Cape, Rhodes University (EA) and by the Department of Science and Technology (DST) South Africa through a DST/NRF South African Research Chairs Initiative for the Professor of Medicinal Chemistry and Nanotechnology (TN).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11051_2017_3853_MOESM1_ESM.docx (397 kb)
ESM 1(DOCX 396 kb)


  1. Achadu OJ, Uddin I, Nyokong T (2016) Fluorescence behavior of nanoconjugates of graphene quantum dots and zinc phthalocyanines. J Photochem Photobiol A Chem 317:12–25CrossRefGoogle Scholar
  2. Agboola B, Ozoemena KI, Nyokong T (2006) Synthesis and electrochemical characterisation of benzyl mercapto and dodecylmercapto tetra substituted cobalt, iron, and zinc phthalocyanines complexes. Electrochemica Acta 51:4379–4387CrossRefGoogle Scholar
  3. Ali H, van Lier JE (1999) Metal complexes as photo- and radiosensitizers. Chem Rev 99:2379–2450CrossRefGoogle Scholar
  4. Aplin R, Wait TD (2000) Comparison of three advanced oxidation. Processes for Degradation of Textile Dyes Water Sci Technol 42:345–354Google Scholar
  5. Bin Na H, Chan Song I, Hyeon T (2009) Inorganic nanoparticles for MRI contrast agents. Adv Mater 21:2133–2148CrossRefGoogle Scholar
  6. Chomoucka J, Drbohlavova J, Huska D, Adam V, Kizek R, Hubalek J (2010) Magnetic nanoparticles and targeted drug delivering. Pharmacol Res 62:144–149CrossRefGoogle Scholar
  7. Deng YH, Wang CC, Hu JH, Yang YL, Fu SK (2005) Investigation of formation of silica-coated magnetite nanoparticles via sol–gel approach. Colloids Surf A:Physicochem Eng Aspects 62:87–93CrossRefGoogle Scholar
  8. Deng J, Jiang J, Zhang Y, Lin X, Du C, Xiong Y (2008)(2006) FeVO4 as a highly active heterogeneous Fenton-like catalyst towards the degradation of Orange II. Appl Catal B 84:468–473CrossRefGoogle Scholar
  9. Elliott DW, Zhang WX (2001) Field assessment of nanoscale bimetallic particles for groundwater treatment. Environ Sci Technol 35:4922–4926CrossRefGoogle Scholar
  10. Foote CS (1979) In: Wasserman HH, Murray RW (eds) Quenching of singlet oxygen. Academic Press, New York, San Francisco, London, pp 139–171Google Scholar
  11. Goethals A, Mugadza T, Arslanoglu Y, Zugle R, Antunes E, Van Hulle SWH, Nyokong T, De Clerck K (2014) Polyamide nanofiber membranes functionalized with zinc phthalocyanines. J Appl Polym Sci 2014:40486 (7 pages)Google Scholar
  12. Idowu M, Nyokong T (2008) Photosensitizing properties of octacarboxy metallophthalocyanines in aqueous medium and their interaction with bovine serum albumin. J Photochem Photobiol A Chem 200:396–401CrossRefGoogle Scholar
  13. Idowu M, Nyokong T (2012) Photophysical behavior of fluorescent nanocomposites of phthalocyanine linked to quantum dots and magnetic nanoparticles. Int J Nanosci 11(2012). Article number 1250018Google Scholar
  14. Kadish K, Smith KM, Guilard R (eds) (2003) Porphyrins handbook: applications of phthalocyanines, vol 19. Academic Press, New YorkGoogle Scholar
  15. Lang K, Mosinger J, Kubat P (2016) Nanofibers and nanocomposite films for singlet oxygen based applications. In: Nonell S, Flors C (eds) Singlet oxygen: applications in biosciences and nanosciences, vol 1. Royal Society of Chemistry, Thomas Graham House, Cambridge, pp 305–322. ISBN 978-1-78262-038-9Google Scholar
  16. Ledwaba M, Masilela N, Nyokong T, Antunes E (2015) Surface modification of silica-coated gadolinium oxide nanoparticles with zinc tetracarboxyphenoxy phthalocyanine for the photodegradation of Orange G. J. Mol. Cat. A: Chem. 403:64–76CrossRefGoogle Scholar
  17. Li Y, Pritchett TM, Huang J, Ke M, Shao P, Sun W (2008) Photophysics and nonlinear absorption of peripheral substituted zinc phthalocyanines. J Phys Chem A 112:7200–7207CrossRefGoogle Scholar
  18. Mafukidze DM, Mashazi P, Nyokong T (2016) Synthesis and singlet oxygen production by a phthalocyanine when embedded in asymmetric polymer membranes. Polymer 105:203–213CrossRefGoogle Scholar
  19. Marais E, Klein R, Antunes E, Nyokong T (2007) Photocatalysis of 4-nitrophenol using zinc phthalocyanine complexes. J Mol Catal A: Chem 261:36–42CrossRefGoogle Scholar
  20. Masilela N, Kleyi P, Tshentu Z, Priniotakis G, Westbroek P, Nyokong T (2013) Photodynamic inactivation of Staphylococcus aureus using low symmetrically substituted phthalocyanines supported on a polystyrene polymer fiber. Dyes Pigments 96:500–508CrossRefGoogle Scholar
  21. Meetani MA, Rauf MA, Hisaindee S, Khaleel A, AlZamly A, Ahmad A (2011) Mechanistic studies of photoinduced degradation of Orange G using LC/MS. RSC Adv 1:490–497CrossRefGoogle Scholar
  22. Modisha P, Nyokong T (2014) Fabrication of phthalocyanine-magnetic nanoparticles hybrid nanofibers for degradation of Orange-G. J Mol Cat A: Chem 381:132–137CrossRefGoogle Scholar
  23. Modisha P, Antunes E, Mack J, Nyokong T (2013a) Improvement of the photophysical parameters of zinc octacarboxy phthalocyanine upon conjugation to magnetic nanoparticles. Int J Nanosci 12(2013):1350010 10 ppCrossRefGoogle Scholar
  24. Modisha P, Nyokong T, Antunes E (2013b) Photodegradation of Orange-G using zinc octacarboxyphthalocyanine supported on Fe3O4 nanoparticles. J Mol Cat A: Chem 380:131–138CrossRefGoogle Scholar
  25. Mornet S, Vasseur S, Grasset F, Verveka P, Goglio G, Demourgues A, Portier J, Pollert E, Duguet E (2006) Magnetic nanoparticle design for medical applications. Prog Solid State Chem 34:237–247CrossRefGoogle Scholar
  26. Mosinger J, Lang K, Kubát P, Sýkora J, Hof M, Plistil L, Mosinger B Jr (2009) Photofunctional polyurethane nanofabrics doped by zinc tetraphenylporphyrin and zinc phthalocyanine photosensitizers. J Fluoresc 19:705–713CrossRefGoogle Scholar
  27. Neppolian N, Choi HC, Sakhivel S, Banunathi A, Murugaan V (2002) Solar light induced and TiO2 assisted degradation of textile dye reactive blue 4. Chemosphere 46:1173–1181CrossRefGoogle Scholar
  28. Nyokong T (2006) In: Zagal JH, Bedioui F, Dodelet JP (eds) N4-macrocyclic metal complexes: electrocatalysis, electrophotochemistry, and biomimetric electro-catalysis. Springer, Berlin Chapter 7Google Scholar
  29. Ogunsipe A, Nyokong T (2005) Photophysical and photochemical studies of sulphonated non-transition metal phthalocyanines in aqueous and non-aqueous media. J Photochem Photobiol A Chem 173:211–220CrossRefGoogle Scholar
  30. Okura I (2001) Photosensitization of porphyrins and phthalocyanines. Gordon and Breach Publishers, BerlinCrossRefGoogle Scholar
  31. Oluwole DO, Tilbury CM, Prinsloo E, Limson J, Nyokong T (2016) Photophysicochemical properties and in vitro cytotoxicity of zinc tetracarboxyphenoxy phthalocyanine—quantum dot nanocomposites. Polyhedron 106:92–100CrossRefGoogle Scholar
  32. Osifeko OL, Nyokong T (2014) Applications of lead phthalocyanines embedded in electrospun fibers for the photoinactivation of Escherichia coli in water. Dyes Pigments 111(2014):8–15CrossRefGoogle Scholar
  33. Rosenthal I, Ben Hur E (1996) In: Leznoff CC, Lever ABP (eds) Phthalocyanines: properties and applications, vol 1–4. Wiley VCH, New YorkGoogle Scholar
  34. Spiller W, Kliesch H, Wöhrle D, Hackbarth S, Röder B, Schnurpfeil GJ (1998) Singlet oxygen quantum yields of different photosensitizers in polar solvents and micellar solutions. J Porphyrins Phthalocyanines 2:145–158CrossRefGoogle Scholar
  35. Stylidi M, Kondarides DI, Verykios XE (2004) Visible light-induced photocatalytic degradation of Acid Orange 7 in aqueous TiO 2 suspensions. Appl Catal 47:189–201CrossRefGoogle Scholar
  36. Sun J, Wang X, Sun J, Sun R, Sun S, Qiao L (2006) Photocatalytic degradation and kinetics of Orange G using nano-sized Sn(IV)/TiO2/AC photocatalyst. J Mol Catal A Chem 260:241–245CrossRefGoogle Scholar
  37. Tombe S, Chidawanyika W, Antunes E, Priniotakis G, Westbroek P, Nyokong T (2012) Physicochemical behavior of zinc tetrakis (benzylmercapto) phthalocyanine when used to functionalize gold nanoparticles and in electrospun fibers. J Photochem Photobiol A Chem 240:50–58CrossRefGoogle Scholar
  38. Tombe S, Antunes E, Nyokong T (2013) Electrospun fibers functionalized with phthalocyanine-gold nanoparticle conjugates for photocatalytic applications. J Mol Catal A Chem 371:125–134CrossRefGoogle Scholar
  39. Wöhrle D, Suvorova O, Gerdes R, Bartels O, Lapok L, Baziakina N, Makarov S, Slodek A (2004) Efficient oxidations and photooxidations with molecular oxygen using metal phthalocyanines as catalysts and photocatalysts. J Porphyrins Phthalocyanines 8:1020–1041CrossRefGoogle Scholar
  40. Zhou L, Gu Z, Liu X, Yin W, Tian G, Yan L, Jin S, Ren W, Xing G, Li W, Chang X, Huc Z, Zhao Y (2012) Size-tunable synthesis of lanthanide-doped Gd2O3 nanoparticles and their applications for optical and magnetic resonance imaging. J Mater Chem 22:966–974CrossRefGoogle Scholar
  41. Zugle R, Litwinski C, Torto N, Nyokong T (2011) Photophysical and photochemical behavior of electrospun fibers of a polyurethane polymer chemically linked to lutetium carboxyphenoxy phthalocyanine. New J Chem 35:1588–1595CrossRefGoogle Scholar
  42. Zugle R, Antunes E, Khene S, Nyokong T (2012) Photooxidation of 4-chlorophenol sensitized by lutetium tetraphenoxy phthalocyanine anchored on electrospun polystyrene polymer fiber. Polyhedron 33:74–81CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of ChemistryRhodes UniversityGrahamstownSouth Africa
  2. 2.Department of ChemistryUniversity of the Western CapeBellvilleSouth Africa

Personalised recommendations