First principles study of vibrational dynamics of ceria-titania hybrid clusters

  • Abdul MajidEmail author
  • Maryam Bibi
Research Paper


Density functional theory based calculations were performed to study vibrational properties of ceria, titania, and ceria-titania hybrid clusters. The findings revealed the dominance of vibrations related to oxygen when compared to those of metallic atoms in the clusters. In case of hybrid cluster, the softening of normal modes related to exterior oxygen atoms in ceria and softening/hardening of high/low frequency modes related to titania dimmers are observed. The results calculated for monomers conform to symmetry predictions according to which three IR and three Raman active modes were detected for TiO2, whereas two IR active and one Raman active modes were observed for CeO2. The comparative analysis indicates that the hybrid cluster CeTiO4 contains simultaneous vibrational fingerprints of the component dimmers. The symmetry, nature of vibrations, IR and Raman activity, intensities, and atomic involvement in different modes of the clusters are described in detail. The study points to engineering of CeTiO4 to tailor its properties for technological visible region applications in photocatalytic and electrochemical devices.


Normal vibrational modes IR spectrum Raman spectrum Molecular clusters Semiconductor photocatalysis Modeling and simulation 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Arurault L et al (2008) Nanocrystallized ceria-based coatings prepared by electrochemistry on TA6V titanium alloy. Mat Res Bull 43:796–805. doi: 10.1016/j.materresbull.2007.07.019 CrossRefGoogle Scholar
  2. Barry NPE, Pitto-Barry A, Sanchez AM et al (2014) Fabrication of crystals from single metal atoms. Nature Comm 5:3851. doi: 10.1038/ncomms4851 Google Scholar
  3. Bickelhaupt FM, Baerends EJ (2000) Kohn-Sham density functional theory: predicting and understanding chemistry. Rev Comput Chem 15:1–86. doi: 10.1002/9780470125922.ch1 CrossRefGoogle Scholar
  4. Blomen LJMJ, Mugerwa MN (1993) Fuel cell systems. Plenum Press, NYCrossRefGoogle Scholar
  5. Bridgeman AJ, Cavigliasso G (2002) Density functional study of the vibrational frequencies of Lindqvist polyanions. Chem Phys 279:143–159. doi: 10.1016/S0301-0104(02)00450-0 CrossRefGoogle Scholar
  6. Bunker PR, Jensen P (1998) Molecular symmetry and spectroscopy, Second edn. NRC Research Press, OttawaGoogle Scholar
  7. Chen M, Straatsma TP, Dixon DA (2015) Molecular and dissociative adsorption of water on (TiO2)n clusters, n = 1–4. J Phys Chem A 119:11406–11421. doi: 10.1021/acs.jpca.5b07697 CrossRefGoogle Scholar
  8. L. J. de Jongh (1994). Physics and chemistry of metal cluster compounds: model systems for small metal particles, Kluwer Academic PublishersGoogle Scholar
  9. Fan L, Ziegler T (1992) Application of density functional theory to infrared absorption intensity calculations on main group molecules. J Chem Phys 96:9005. doi: 10.1063/1.462258 CrossRefGoogle Scholar
  10. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38. doi: 10.1038/238037a0 CrossRefGoogle Scholar
  11. Guerra F et al (2004) Voronoi deformation density (VDD) charges: assessment of the Mulliken, Bader, Hirshfeld, Weinhold, and VDD methods for charge analysis. J Comput Chem 25:189–210. doi: 10.1002/jcc.10351 CrossRefGoogle Scholar
  12. Gupta SM, Tripathi M (2011) A review of TiO2 nanoparticles. Chinese Sci Bull 56:1639–1657. doi: 10.1007/s11434-011-4476-1 CrossRefGoogle Scholar
  13. Henrich VE, Cox PA (1994) The surface science of metal oxides. Cambridge University Press, CambridgeGoogle Scholar
  14. Jedidi A, Li R, Fornasiero P et al (2015) Vibrational fingerprints of low-lying Pt(n)P(2n) (n = 1–5) cluster structures from global optimization based on density functional theory potential energy surfaces. J Phys Chem A 119:11711–11718. doi: 10.1021/acs.jpca.5b08495 CrossRefGoogle Scholar
  15. Kim JB (2014) Structural isomers of Ti2O4 and Zr2O4 anions identified by slow photoelectron velocity-map imaging spectroscopy. J Am Chem Soc 136:7159–7168. doi: 10.1021/ja502713v CrossRefGoogle Scholar
  16. Lin Y, Xiaoming Z (2008) Preparation of highly dispersed CeO2/TiO2 core-shell nanoparticles. Mat Lett 62:3764–3766. doi: 10.1016/j.matlet.2008.04.059 CrossRefGoogle Scholar
  17. Nakamoto K (2006) Infrared and Raman spectra of inorganic and coordination compounds. Handbook of Vibrational Spectroscopy DOI. doi: 10.1002/0470027320.s4104 Google Scholar
  18. O’Regan B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740. doi: 10.1038/353737a0 CrossRefGoogle Scholar
  19. Park JB et al (2009) High catalytic activity of Au/CeOx/TiO2(110) controlled by the nature of the mixed-metal oxide at the nanometer level. Proc Natl Acad Sci U S A 106:4975–4980. doi: 10.1073/pnas.0812604106 CrossRefGoogle Scholar
  20. Park JB et al (2010) Gold, copper, and platinum nanoparticles dispersed on CeOx/TiO2 (110) surfaces: high water-gas shift activity and the nature of the mixed-metal oxide at the nanometer level. J Am Chem Soc 132:356–363. doi: 10.1021/ja9087677 CrossRefGoogle Scholar
  21. Parker FS (1983) Applications of infrared, Raman and resonance Raman spectroscopy in biochemistry Plenum Press, New York and LondonGoogle Scholar
  22. Pelaez M et al (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Cat B: Env 125:331–349. doi: 10.1016/j.apcatb.2012.05.036 CrossRefGoogle Scholar
  23. Salonitis K, Pandremenos J, Paralikas J et al (2010) Multifunctional materials: engineering applications and processing challenges. Int J Adv Manuf Technol 49:803–826. doi: 10.1007/s00170-009-2428-6 CrossRefGoogle Scholar
  24. Shah NH et al (2016) Ultrasonically engineered ceria-titania nanostructure mediated photocatalytic and sonocatalytic degradation of organic dye. Austin Chem Eng 3:1032Google Scholar
  25. te Velde G (2001) Chemistry with ADF. J Comp Chem 22:931–967. doi: 10.1002/jcc.1056 CrossRefGoogle Scholar
  26. Tedstone AA et al (2016) Synthesis, properties, and applications of transition metal-doped layered transition metal dichalcogenides. Chem Mat 28:1965–1974. doi: 10.1021/acs.chemmater.6b00430 CrossRefGoogle Scholar
  27. Tiziano M et al (2016) Fundamentals and catalytic applications of CeO2-based materials. Chem Rev 116:5987–6041. doi: 10.1021/acs.chemrev.5b00603 CrossRefGoogle Scholar
  28. Tuller HL, Nowick AS (1975) Doped ceria as a solid oxide electrolyte. J Electrochem Soc 122:255–259. doi: 10.1149/1.2134190 CrossRefGoogle Scholar
  29. Valley N et al (2013) A look at the origin and magnitude of the chemical contribution to the enhancement mechanism of surface-enhanced Raman spectroscopy (SERS): theory and experiment. J Phys Chem Lett 4:2599–2604. doi: 10.1021/jz4012383 CrossRefGoogle Scholar
  30. Van Lenthe E, Baerends EJ (2003) Optimized slater-type basis sets for the elements 1–118. J Comput Chem 24:1142–1156. doi: 10.1002/jcc.10255 CrossRefGoogle Scholar
  31. Wang R et al (1997) Light-induced amphiphilic surfaces. Nature 388:431–432. doi: 10.1038/41233 CrossRefGoogle Scholar
  32. Wartewig S (2003) Basic principles of vibrational spectroscopy, in IR and Raman spectroscopy: fundamental processing, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG, doi:  10.1002/3527601635.ch4
  33. Wu H, Wang L-S (1997) Electronic structure of titanium oxide clusters: TiOy (y=1–3) and (TiO2)n (n=1–4). J Chem Phys 107:8221–8228CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of GujratGujratPakistan

Personalised recommendations