Advertisement

Kinetic Monte Carlo simulation of growth of Ge quantum dot multilayers with amorphous matrix

  • Jan Endres
  • Václav Holý
  • Stanislav Daniš
  • Maja Buljan
Research Paper

Abstract

Kinetic Monte Carlo method is used to simulate the growth of germanium quantum dot multilayers with amorphous matrix. We modified a model for self-assembled growth of quantum dots in crystalline matrix for the case of the amorphous one. The surface morphology given as hills above the buried dots is the main driving force for the ordering of the quantum dots. In the simulations, we observed a short-range self-ordering in the lateral direction. The ordering in lateral and vertical direction depends strongly on the surface morphology, mostly on the strength how the deposited material replicates previous surfaces.

Keywords

Quantum dot Multilayer Amorphous Kinetic Monte Carlo Modeling and simulations 

Notes

Acknowledgements

The work was supported by the Czech Science Foundation (project no. 14-37427G). M. B. acknowledges the support of the Croatian Science Foundation (project no. 2334). The authors thank Martin Mixa for providing the source code of his simulation program which was modified for our purpose.

Compliance with ethical standards

Funding

This study was funded by the Czech Science Foundation (project number 14-37427G) and Croatian Science Foundation (project number 2334).

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Adiga S P, Zapol P, Curtiss L A (2006) Atomistic simulations of amorphous alumina surfaces. Phys Rev B 74:064,204CrossRefGoogle Scholar
  2. Alivisatos A P (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937CrossRefGoogle Scholar
  3. Alivisatos P (2000) Colloidal quantum dots. From scaling laws to biological applications. Pure Appl Chem 72:3–9CrossRefGoogle Scholar
  4. Asaro R J, Tiller W A (1972) Interface morphology development during stress corrosion cracking: part I. Via surface diffusion. Metall Trans 3:1789–1796CrossRefGoogle Scholar
  5. Babonneau D, Petroff F, Maurice J L, Fettar F, Vaurès A, Naudon A (2000) Evidence for a self-organized growth in granular Co/Al2O3 multilayers. Appl Phys Lett 76:2892–2894CrossRefGoogle Scholar
  6. Bortz A B, Kalos M H, Lebowitz J L (1975) New algorithm for Monte Carlo simulations of Ising spin systems. J Comput Phys 17:10–18CrossRefGoogle Scholar
  7. Bostedt C, van Buuren T, Willey T M, Franco N, Terminello L J, Heske C, Möller T (2004) Strong quantum-confinement effects in the conduction band of germanium nanocrystals. Appl Phys Lett 84:4056–4058Google Scholar
  8. Brus L (1986) Electronic wave functions in semiconductor clusters: experiment and theory. J Phys Chem 90:2555–2560CrossRefGoogle Scholar
  9. Buljan M, Desnica U V, Dražić G, Ivanda M, Radić N, Dubček P, Salamon K, Bernstorff S, Holý V (2009a) The influence of deposition temperature on the correlation of Ge quantum dot positions in amorphous silica matrix. Nanotechnology 20:085,612Google Scholar
  10. Buljan M, Desnica U V, Ivanda M, Radić N, Dubček P, Dražić G, Salamon K, Bernstorff S, Holý V (2009b) Formation of three-dimensional quantum-dot superlattices in amorphous systems: experiments and Monte Carlo simulations. Phys Rev B 79:035,310Google Scholar
  11. Buljan M, Pinto S R C, Rolo A G, Martín-Sanchez J, Gomes M J M, Grenzer J, Mücklich A, Bernstorff S, Holý V (2010) Self-assembling of Ge quantum dots in an alumina matrix. Phys Rev B 82:235,407CrossRefGoogle Scholar
  12. Buljan M, Jerčinović M, Siketić Z, Bogdanović-Radović I, Marion ID, Kralj M, Ivanda M, Turković A, Dražić G, Bernstorff S, Radić N (2013a) Tuning the growth properties of Ge quantum dot lattices in amorphous oxides by matrix type. J Appl Crystallogr 46:1490–1500Google Scholar
  13. Buljan M, Radić N, Ivanda M, Bogdanović-Radović I, Karlušić M, Grenzer J, Prucnal S, Dražić G, Pletikapić G, Svetličić V, Jerčinović M, Bernstorff S, Holý V (2013b) Ge quantum dot lattices in Al2O3 multilayers. J Nanopart Res 15:1485Google Scholar
  14. Buljan M, Roshchupkina O, Šantić A, Holý V, Baehtz C, Mücklich A, Lukáš, Horák, Valeš V, Radić N, Bernstorff S, Grenzer J (2013c) Growth of a three-dimensional anisotropic lattice of Ge quantum dots in an amorphous alumina matrix. J Appl Crystallogr 46:709–715Google Scholar
  15. Courty A, Mermet A, Albouy P A, Duval E, Pileni M P (2005) Vibrational coherence of self-organized silver nanocrystals in f.c.c. supra-crystals. Nat Mater 4:395–397CrossRefGoogle Scholar
  16. Czigány Zs, Radnóczi G (1994) Formation of a-Ge particles with nm dimensions and their behaviour during annealing. J Non-Cryst Solids 175:228–237CrossRefGoogle Scholar
  17. Edwards S F, Wilkinson D R (1982) The surface statistics of granular aggregate. Proc R Soc London Ser A 17:381Google Scholar
  18. Fichthorn K A, Weinberg W H (1991) Theoretical foundations of dynamical Monte Carlo simulations. J Chem Phys 95:1090CrossRefGoogle Scholar
  19. Gao H (1994) Some general properties of stress-driven surface evolution in a heteroepitaxial thin film structure. J Mech Phys Solids 42:741–772CrossRefGoogle Scholar
  20. Grützmacher D, Fromherz T, Dais C, Stangl J, Müller E, Ekinci Y, Solak H H, Sigg H, Lechner R T, Wintersberger E, Birner S, Holý V, Bauer G (2007) Three-dimensional Si/Ge quantum dot crystals. Nano Lett 7:3150–3156CrossRefGoogle Scholar
  21. Hu X, Cahill D G, Averback R S (2002) Burrowing of Pt nanoparticles into SiO2 during ion-beam irradiation. J Appl Phys 92:3995–4000CrossRefGoogle Scholar
  22. Ikemiya N, Umemoto J, Hara S, Ogino K (1993) Surface tensions and densities of molten Al203 Ti203 V2O5 and Nb205. ISIJ Int 33:156–165CrossRefGoogle Scholar
  23. Jaccodine R J (1963) Surface energy of germanium and silicon. J Electrochem Soc 110:524–527CrossRefGoogle Scholar
  24. Karmous A, Berbezier I, Ronda A (2006) Formation and ordering of Ge nanocrystals on SiO2. Phys Rev B 73:075,323CrossRefGoogle Scholar
  25. Kästner M, Voigtländer B (1999) Kinetically self-limiting growth of Ge islands on Si(001). Phys Rev Lett 82:2745–2748CrossRefGoogle Scholar
  26. Kratzer P, Penev E, Scheffler M (2002) First-principles studies of kinetics in epitaxial growth of III–V semiconductors. Appl Phys A 75:79–88CrossRefGoogle Scholar
  27. Laurent V, Chatain D, Eustathopoulos N (1991) Wettability of SiO2 and oxidized SiC by aluminium. Mater Sci Eng A 135:89–94CrossRefGoogle Scholar
  28. Lee C S, Kahng B, Barabási A L (2001) Spatial ordering of stacked quantum dots. Appl Phys Lett 78:984–986CrossRefGoogle Scholar
  29. Löper P, Müller R, Hiller D, Barthel T, Malguth E, Janz S, Goldschmidt J C, Hermle M, Zacharias M (2011) Quasi-Fermi-level splitting in ideal silicon nanocrystal superlattices. Phys Rev B 84:195,317CrossRefGoogle Scholar
  30. Meixner M, Schöll E (2003) Kinetically enhanced correlation and anticorrelation effects in self-organized quantum dot stacks. Phys Rev B 67:121,202(R)CrossRefGoogle Scholar
  31. Metropolis N, Ulam S (1949) The Monte Carlo method. J Am Stat Assoc 44:335–341CrossRefGoogle Scholar
  32. Metropolis N, Rosenbluth A W, Rosenbluth M N, Teller A H, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087CrossRefGoogle Scholar
  33. Mixa M, Holý V, Springholz G, Bauer G (2009) Kinetic Monte Carlo simulation of self-organized growth of PbSe/PbEuTe quantum dot multilayers. Phys Rev B 80:045,325. doi: 10.1103/PhysRevB.80.045325 CrossRefGoogle Scholar
  34. Montalenti F, Marzegalli A, Capellini G, De Seta M, Miglio L (2007) Vertical and lateral ordering of Ge islands grown on Si(001): theory and experiments. J Phys Condens Matter 19:225,001CrossRefGoogle Scholar
  35. Nicholas M G (1988) Interactions at oxide-metal interfaces. Mater Sci Forum 29:127–150CrossRefGoogle Scholar
  36. Penev E, Kratzer P, Scheffler M (2001) Effect of strain on surface diffusion in semiconductor heteroepitaxy. Phys Rev B 64:085,401CrossRefGoogle Scholar
  37. Pinto S R C, Rolo A G, Gomes M J M, Ivanda M, Bogdanović-Radović I, Grenzer J, Mücklich A, Barber D J, Bernstorff S, Buljan M (2010) Formation of void lattice after annealing of Ge quantum dot lattice in alumina matrix. Appl Phys Lett 97:173,113CrossRefGoogle Scholar
  38. Pinto S R C, Rolo A G, Buljan M, Chahboun A, Bernstorff S, Barradas N P, Alves E, Kashtiban R J, Bangert U, Gomes M J M (2011) Low-temperature fabrication of layered self-organized Ge clusters by RF-sputtering. Nanoscale Res Lett 6:341CrossRefGoogle Scholar
  39. Pinto S R C, Buljan M, Chahboun A, Roldan M A, Bernstorff S, Varela M, Pennycook S J, Barradas N P, Alves E, Molina S I, Ramos M M D, Gomes M J M (2012a) Tuning the properties of Ge-quantum dots superlattices in amorphous silica matrix through deposition conditions. J Appl Phys 111:074,316Google Scholar
  40. Pinto S R C, Buljan M, Marques L, Martín-Sánchez J, Conde’ O, Chahboun A, Ramos A R, Barradas N P, Alves E, Bernstorff S, Grenzer J, Mücklich A, Ramos M M D, Gomes M J M (2012b) Influence of annealing conditions on the formation of regular lattices of voids and Ge quantum dots in an amorphous alumina matrix. Nanotechnology 23:405,605Google Scholar
  41. Ratsch C, Šmilauer P, Vvedensky DD, Zangwill A (1996) Mechanism for coherent island formation during heteroepitaxy. J Phys I France 6:575–581CrossRefGoogle Scholar
  42. Renaud G, Lazzari R, Leroy F (2009) Probing surface and interface morphology with grazing incidence small angle X-ray scattering. Surf Sci Rep 64:255–380CrossRefGoogle Scholar
  43. Roder A, Kob W, Binder K (2001) Structure and dynamics of amorphous silica surfaces. J Chem Phys 114:7602–7614CrossRefGoogle Scholar
  44. Ruland W, Smarsly B M (2007) Two-dimensional small-angle X-ray scattering of self-assembled nanocomposite films with oriented arrays of spheres: determination of lattice type, preferred orientation, deformation and imperfection. J Appl Crystallogr 40:409–417CrossRefGoogle Scholar
  45. Russo G, Smereka P (2006) Computation of strained epitaxial growth in three dimensions by kinetic Monte Carlo. J Comput Phys 214:809–828CrossRefGoogle Scholar
  46. Schweigert I V, Lehtinen K E J, Carrier M J, Zachariah M R (2002) Structure and properties of silica nanoclusters at high temperatures. Phys Rev B 65:235,410CrossRefGoogle Scholar
  47. Šmilauer P, Vvedensky DD (1995) Fundamental processes in Si/Si and Ge/Si epitaxy studied by scanning tunneling microscopy during growth. Phys Rev B 52:14,263– 14,272CrossRefGoogle Scholar
  48. Springholz G, Holý V, Pinczolits M, Bauer G (1998) Self-Organized growth of three-dimensional quantum-dot crystals with fcc-like stacking and a tunable lattice constant. Science 282:734–737CrossRefGoogle Scholar
  49. Stangl J, Holý V, Bauer G (2004) Structural properties of self-organized semiconductor nanostructures. Rev Mod Phys 76:725–783CrossRefGoogle Scholar
  50. Stearns D G (1992) X-ray scattering from interfacial roughness in multilayer structures. J Appl Phys 71:4286–4298CrossRefGoogle Scholar
  51. Stearns D G, Gaines D P, Sweeney D W, Gullikson E M (1998) Nonspecular X-ray scattering in a multilayer-coated imaging system. J Appl Phys 84:1003–1028CrossRefGoogle Scholar
  52. Stekolnikov A A, Furthmuller J, Bechstedt F (2002) Absolute surface energies of group-IV semiconductors: dependence on orientation and reconstruction. Phys Rev B 65:115,318CrossRefGoogle Scholar
  53. Tavakoli A H, Maram P S, Widgeon S J, Rufner J, van Benthem K, Ushakov S, Sen S, Navrotsky A (2013) Amorphous alumina nanoparticles: structure, surface energy, and thermodynamic phase stability. J Phys Chem C 117:17,123–17,130Google Scholar
  54. Tersoff J, LeGoues F K (1994) Competing relaxation mechanisms in strained layers. Phys Rev Lett 72:3570–3573Google Scholar
  55. Voigtländer B (2001) Fundamental processes in Si/Si and Ge/Si epitaxy studied by scanning tunneling microscopy during growth. Surf Sci Rep 43:127–254CrossRefGoogle Scholar
  56. Wu Y C, Wang L W, Lai C H (2007) Low-temperature ordering of (001) granular FePt films by inserting ultrathin SiO2 layers. Appl Phys Lett 91:072,502CrossRefGoogle Scholar
  57. Young W M, Elcock E W (1966) Monte Carlo studies of vacancy migration in binary ordered alloys: I. Proc Phys Soc 89:735–746CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic
  2. 2.Ruđer Bošković InstituteZagrebCroatia

Personalised recommendations