Computational study of plasma-assisted photoacoustic response from gold nanoparticles irradiated by off-resonance ultrafast laser

  • Ali Hatef
  • Behafarid Darvish
  • Amir Yousef Sajjadi
Research Paper

Abstract

The gold nanoparticles (AuNPs) are capable of enhancing the incident laser field in the form of scattered near field for even an off-resonance irradiation where the incident laser wavelength is far away from the localized surface plasmon resonance (LSPR). If the intensity of the pulse laser is large enough, this capability can be employed to generate a highly localized free electron (plasma) in the vicinity of the particles. The generated plasma can absorb more energy during the pulse, and this energy deposition can be considered as an energy source for structural mechanics calculations in the surrounding media to generate a photoacoustic (PA) signal. To show this, in this paper, we model plasma-mediated PA pressure wave propagation from a 100-nm AuNPs and the surrounding media irradiated by an ultrashort pulse laser. In this model, the AuNP is immersed in water and the laser pulse width is ranging from 70 fs to 2 ps at the wavelength of 800 nm (off-resonance). Our results qualitatively show the substantial impact of the energy deposition in plasma on the PA signal through boosting the pressure amplitudes up to ∼1000 times compared to the conventional approach.

Keywords

Plasma dynamics Photoacoustic Plasmonics Gold nanoparticle Ultrashort pulsed laser Modeling and simulation 

References

  1. Agarwal A, Huang SW, O’Donnell M, Day KC, Day M, Kotov N, Ashkenazi S (2007) Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. J Appl Phys 102:064701. doi:10.1063/1.2777127 CrossRefGoogle Scholar
  2. Ali H, Behafarid D, Adam B, Adrien D, Michel M (2016) Computational characterization of plasma effects in ultrafast laser irradiation of spherical gold nanostructures for photothermal therapy. J Phys D Appl Phys 49:105401CrossRefGoogle Scholar
  3. Andreev VG, Karabutov AA, Oraevsky AA (2003) Detection of ultrawide-band ultrasound pulses in optoacoustic tomography. Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on 50:1383–1390. doi:10.1109/TUFFC.2003.1244756 CrossRefGoogle Scholar
  4. Balling P, Schou J (2013) Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films. Rep Prog Phys 76:036502CrossRefGoogle Scholar
  5. Boulais É, Lachaine R, Meunier M (2012) Plasma mediated off-resonance plasmonic enhanced ultrafast laser-induced nanocavitation. Nano Lett 12:4763–4769. doi:10.1021/nl302200w CrossRefGoogle Scholar
  6. Boutopoulos C, Hatef A, Fortin-Deschenes M, Meunier M (2015) Dynamic imaging of a single gold nanoparticle in liquid irradiated by off-resonance femtosecond laser. Nanoscale 7:11758–11765. doi:10.1039/C5NR02721G CrossRefGoogle Scholar
  7. Boutopoulos C, Dagallier A, Sansone M, Blanchard-Dionne A-P, Lecavalier-Hurtubise E, Boulais E, Meunier M (2016) Photon-induced generation and spatial control of extreme pressure at the nanoscale with a gold bowtie nano-antenna platform. Nanoscale 8:17196–17203. doi:10.1039/C6NR03888C CrossRefGoogle Scholar
  8. Brown M, Arnold C (2010) Fundamentals of laser-material interaction and application to multiscale surface modification. In: Sugioka K, Meunier M, Piqué A (eds) Laser precision microfabrication, vol 135. Springer Series in Materials Science. Springer, Berlin Heidelberg, pp 91–120. doi:10.1007/978-3-642-10523-4_4 CrossRefGoogle Scholar
  9. Changhui L, Lihong VW (2009) Photoacoustic tomography and sensing in biomedicine. Phys Med Biol 54:R59CrossRefGoogle Scholar
  10. Chen Y-S, Frey W, Aglyamov S, Emelianov S (2012) Environment-dependent generation of photoacoustic waves from plasmonic nanoparticles. Small 8:47–52. doi:10.1002/smll.201101140 CrossRefGoogle Scholar
  11. COMSOL Multiphysics (2013) Acoustic module user’s guide, version 4.3bGoogle Scholar
  12. Copland JA, Eghtedari M, Popov VL, Kotov N, Mamedova N, Motamedi M, Oraevsky AA (2004) Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography. Mol Imaging Biol 6:341–349. doi:10.1016/j.mibio.2004.06.002 CrossRefGoogle Scholar
  13. Ermilov SA et al (2009) Laser optoacoustic imaging system for detection of breast cancer. BIOMEDO 14:024007–024014. doi:10.1117/1.3086616 Google Scholar
  14. Hashimoto S, Werner D, Uwada T (2012) Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication. J Photochem Photobiol C: Photochem Rev 13:28–54. doi:10.1016/j.jphotochemrev.2012.01.001 CrossRefGoogle Scholar
  15. Hatef A et al (2015) Analysis of photoacoustic response from gold–silver alloy nanoparticles irradiated by short pulsed laser in water. J Phys Chem C 119:24075–24080. doi:10.1021/acs.jpcc.5b08359 CrossRefGoogle Scholar
  16. Jiang H (2015) Photoacoustic tomography. CRC Press, Taylor & Francis Group, Boca RatonGoogle Scholar
  17. Johnson PB, Christy RW (1972) Optical constants of the Noble metals. Phys Rev B 6:4370–4379CrossRefGoogle Scholar
  18. Korenchenko AE, Beskachko VP (2008) Determining the shear modulus of water in experiments with a floating disk. J Appl Mech Tech Phys 49:80–83. doi:10.1007/s10808-008-0011-9 CrossRefGoogle Scholar
  19. Ku G, Wang X, Xie X, Stoica G, Wang LV (2005) Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography. Appl Opt 44:770–775. doi:10.1364/AO.44.000770 CrossRefGoogle Scholar
  20. Masim FCP et al (2016) Enhanced photoacoustics from gold nano-colloidal suspensions under femtosecond laser excitation. Opt Express 24:14781–14792. doi:10.1364/OE.24.014781 CrossRefGoogle Scholar
  21. Moon H et al (2015) Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods for sensitive photoacoustic imaging. ACS Nano 9:2711–2719. doi:10.1021/nn506516p CrossRefGoogle Scholar
  22. Ntziachristos V, Ripoll J, Wang LV, Weissleder R (2005) Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotech 23:313–320CrossRefGoogle Scholar
  23. Prost A, Poisson F, Bossy E (2015) Photoacoustic generation by a gold nanosphere: from linear to nonlinear thermoelastics in the long-pulse illumination regime. Phys Rev B 92:115450CrossRefGoogle Scholar
  24. Sajjadi AY, Mitra K, Guo Z (2013) Thermal analysis and experiments of laser-tissue interactions: a review 44:345–388. doi:10.1615/HeatTransRes.2012006425
  25. Sheu Y-L, Li P-C (2008) Simulations of photoacoustic wave propagation using a finite-difference time-domain method with Berenger’s perfectly matched layers. J Acoust Soc Am 124:3471–3480. doi:10.1121/1.3003087 CrossRefGoogle Scholar
  26. Vogel A, Noack J, Huttman G, Paltauf G (2005) Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl Phys B Lasers Opt 81:1015–1047CrossRefGoogle Scholar
  27. Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotech 19:316–317CrossRefGoogle Scholar
  28. Yoon SJ, Murthy A, Johnston KP, Sokolov KV, Emelianov SY (2012) Thermal stability of biodegradable plasmonic nanoclusters in photoacoustic imaging. Opt Express 20:29479–29487. doi:10.1364/OE.20.029479 CrossRefGoogle Scholar
  29. Yousef Sajjadi A, Mitra K, Grace M (2011) Ablation of subsurface tumors using an ultra-short pulse laser. Opt Lasers Eng 49:451–456. doi:10.1016/j.optlaseng.2010.11.020 CrossRefGoogle Scholar
  30. Zhou Y, Yao J, Wang LV (2016) Tutorial on photoacoustic tomography. BIOMEDO 21:061007–061007. doi:10.1117/1.JBO.21.6.061007 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Nipissing Computational Physics Laboratory (NCPL), Department of Computer Science and MathematicsNipissing UniversityNorth BayCanada
  2. 2.Cutaneous Biology Research CenterMassachusetts General HospitalBostonUSA
  3. 3.Department of DermatologyHarvard Medical SchoolCharlestownUSA

Personalised recommendations