Control of nanoparticle agglomeration through variation of the time-temperature profile in chemical vapor synthesis

Research Paper
  • 228 Downloads

Abstract

The influence of the time-temperature history on the characteristics of nanoparticles such as size, degree of agglomeration, or crystallinity is investigated for chemical vapor synthesis (CVS). A simple reaction-coagulation-sintering model is used to describe the CVS process, and the results of the model are compared to experimental data. Nanocrystalline titania is used as model material. Titania nanoparticles are generated from titanium-tetraisopropoxide (TTIP) in a hot-wall reactor. Pure anatase particles and mixtures of anatase, rutile (up to 11 vol.%), and brookite (up to 29 vol.%) with primary particle sizes from 1.7 nm to 10.5 nm and agglomerate particle sizes from 24.3 nm to 55.6 nm are formed depending on the particle time-temperature history. An inductively heated furnace with variable inductor geometry is used as a novel system to control the time-temperature profile in the reactor externally covering a large wall temperature range from 873 K to 2023 K. An appropriate choice of inductor geometry, i.e. time-temperature profile, can significantly reduce the degree of agglomeration. Other particle characteristics such as crystallinity are also substantially influenced by the time-temperature profile.

Keywords

CVS CVD Gas-phase synthesis Agglomeration TiO2 Modeling 

References

  1. Ali M, Friedenberger N, Spasova M, Winterer M (2009) A novel approach for chemical vapor synthesis of ZnO nanocrystals: optimization of yield, crystallinity. Chem Vap Depos 15:192–198. doi:10.1002/cvde.200806722 CrossRefGoogle Scholar
  2. Bai J, Zhou B (2014) Titanium dioxide nanomaterials for sensor applications. Chem Rev 114:10131–10176. doi:10.1021/cr400625j CrossRefGoogle Scholar
  3. Buesser B, Pratsinis SE (2012) Design of nanomaterial synthesis by aerosol processes. Annu Rev Chem Biomol Eng 3:103–127. doi:10.1146/annurev-chembioeng-062011-080930 CrossRefGoogle Scholar
  4. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959. doi:10.1021/cr0500535 CrossRefGoogle Scholar
  5. Chiang Y-M, Birnie D, Kingery WD (1997) Physical ceramics: principles for ceramic science and engineering. Wiley, New York, p 187Google Scholar
  6. Djenadic R, Chowdhury SR, Spasova M, Gondorf A, Akyildiz E, Winterer M (2007) Influence of the time-temperature-profile on powder characteristics of nanocrystalline anatase (TiO2) produced by chemical vapor synthesis. MRS Proc 1056:1056–HH08–07. doi: 10.1557/PROC-1056-HH08–07
  7. Djenadic R, Winterer M (2012) Chemical vapor synthesis of nanocrystalline oxides. In: Lorke A, Winterer M, Schmechel R, Schulz C (eds) Nanoparticles from the gasphase. Springer, Berlin Heidelberg, p 49CrossRefGoogle Scholar
  8. Eggersdorfer ML, Kadau D, Herrmann HJ, Pratsinis SE (2012) Aggregate morphology evolution by sintering: number and diameter of primary particles. J Aerosol Sci 46:7–19. doi:10.1016/j.jaerosci.2011.11.005 CrossRefGoogle Scholar
  9. Eggersdorfer ML, Pratsinis SE (2014) Agglomerates and aggregates of nanoparticles made in the gas phase. Adv Powder Technol 25:71–90. doi:10.1016/j.apt.2013.10.010 CrossRefGoogle Scholar
  10. Flagan RC, Lunden MM (1995) Particle structure control in nanoparticle synthesis from the vapor phase. Mater Sci Eng A 204:113–124. doi:10.1016/0921-5093(95)09947-6 CrossRefGoogle Scholar
  11. Friedlander SK (2000) Smoke, dust, and haze: fundamentals of aerosol dynamics, 2nd edn. Oxford University Press, Oxford, p 346Google Scholar
  12. Goudeli E, Eggersdorfer ML, Pratsinis SE (2015) Coagulation–agglomeration of fractal-like particles: structure and self-preserving size distribution. Langmuir 31:1320–1327. doi:10.1021/la504296z CrossRefGoogle Scholar
  13. Guo Q, Zhou C, Ma Z, Ren Z, Fan H, Yang X (2016) Elementary photocatalytic chemistry on TiO2 surfaces. Chem Soc Rev 45:3701–3730. doi:10.1039/c5cs00448a CrossRefGoogle Scholar
  14. Grass RN, Tsantilis S, Pratsinis SE (2006) Design of high-temperature, gas-phase synthesis of hard or soft TiO2 agglomerates. AICHE J 52:1318–1325. doi:10.1002/aic.10739 CrossRefGoogle Scholar
  15. Hao X, Zhao H, Xu Z, Zheng C (2013) Population balance-Monte Carlo simulation for gas-to-particle synthesis of nanoparticles. Aerosol Sci Technol 47:1125–1133. doi:10.1080/02786826.2013.823642 CrossRefGoogle Scholar
  16. Hinds WC (2001) Physical and chemical changes in the particulate phase. In: Baron PA, Willeke K (eds) Aerosol measurement. Wiley, New York, p 98Google Scholar
  17. Hoefler HJ, Averback RS (1992) Sinter-forging of nanocrystalline TiO2, MRS Symp. Proc 286:9–14Google Scholar
  18. Howard CJ, Sabine TM, Dickson F (1991) Structural and thermal parameters for rutile and anatase. Acta Crystallogr Sect B Struct Sci 47:462–468. doi:10.1107/S010876819100335X CrossRefGoogle Scholar
  19. Kammler HK, Mädler L, Pratsinis SE (2001) Flame synthesis of nanoparticles. Chem Eng Technol 24:583–596. doi:10.1002/1521-4125(200106)24:6<583::AID-CEAT583>3.0.CO;2-H CrossRefGoogle Scholar
  20. Klein S, Winterer M, Hahn H (1998) Reduced-pressure chemical vapor synthesis of nanocrystalline silicon carbide powders. Chem Vap Depos 4:143–149CrossRefGoogle Scholar
  21. Knieke C, Sommer M, Peukert W (2009) Identifying the apparent and true grinding limit. Powder Technol 195:25–30. doi:10.1016/j.powtec.2009.05.007 CrossRefGoogle Scholar
  22. Kruis FE, Kusters K a, Pratsinis SE, Scarlett B (1993) A simple model for the evolution of the characteristics of aggregate particles undergoing coagulation and sintering. Aerosol Sci Technol 19:514–526. doi:10.1080/02786829308959656 CrossRefGoogle Scholar
  23. Lee Penn R, Banfield JF (1998) Oriented attachment and growth, twinning, polytypism, and formation of metastable phases: insights from nanocrystalline TiO2. Am Mineral 83:1077–1082CrossRefGoogle Scholar
  24. Liao SC, Mayo WE, Pae KD (1997) Theory of high pressure/low temperature sintering of bulk nanocrystalline TiO2. Acta Mater 45:4027–4040. doi:10.1016/S1359-6454(97)00087-6 CrossRefGoogle Scholar
  25. Lowell S, Shields JE, Thomas MA, Thommes M (2004) Characterization of porous solids and powders: surface area, pore size and density. Springer Netherlands, Dordrecht, p 18CrossRefGoogle Scholar
  26. Lutterotti L, Scardi P (1990) Simultaneous structure and size-strain refinement by the Rietveld method. J Appl Crystallogr 23:246–252. doi:10.1107/S0021889890002382 CrossRefGoogle Scholar
  27. Meagher E, Lager G (1979) Polyhedral thermal expansion in the TiO2 polymorphs: refinement of the crystal structures of rutile and brookite at high temperature. Can Mineral 17:77–85Google Scholar
  28. Mulvaney, P (1998), Chaper 12: zeta potential and colloid reaction kinetics. In Fendler, JH (ed.), Nanoparticles and nanostructured films, Wiley-VCH, Weinheim, p 300Google Scholar
  29. Nakaso K, Okuyama K, Shimada M, Pratsinis SE (2003) Effect of reaction temperature on CVD-made TiO2 primary particle diameter. Chem Eng Sci 58:3327–3335. doi:10.1016/S0009-2509(03)00213-6 CrossRefGoogle Scholar
  30. Notthoff C, Schilling C, Winterer M (2012) Gas temperature measurements inside a hot wall chemical vapor synthesis reactor. Rev Sci Instr 83:114904 . doi:10.1063/1.4766956 6pp CrossRefGoogle Scholar
  31. Park HK, Park KY (2015) Control of particle morphology and size in vapor-phase synthesis of titania, silica and alumina nanoparticles. KONA Powd Part J 32:85–101. doi:10.14356/kona.2015018 CrossRefGoogle Scholar
  32. Pfanzelt M, Kubiak P, Fleischhammer M, Wohlfahrt-Mehrens M (2011) TiO2 rutile - an alternative anode material for safe lithium-ion batteries. J Power Sources 196:6815–6821. doi:10.1016/j.jpowsour.2010.09.109 CrossRefGoogle Scholar
  33. Pratsinis SE (1988) Simultaneous nucleation, condensation, and coagulation in aerosol reactors. J Colloid Interface Sci 124:416–427. doi:10.1016/0021-9797(88)90180-4 CrossRefGoogle Scholar
  34. Raj CC, Prasanth R (2016) A critical review of recent developments in nanomaterials for photoelectrodes in dye sensitized solar cells. J Power Sources 317:120–132. doi:10.1016/j.jpowsour.2016.03.016 CrossRefGoogle Scholar
  35. Schilling C, Winterer M (2014) Preserving particle characteristics at increasing production rate of ZnO nanoparticles by chemical vapor synthesis. Chem Vap Depos 20:138–145. doi:10.1002/cvde.201307094 CrossRefGoogle Scholar
  36. Swihart MT (2003) Vapor-phase synthesis of nanoparticles. Curr Opin Colloid Interface Sci 8:127–133. doi:10.1016/S1359-0294(03)00007-4 CrossRefGoogle Scholar
  37. Syvitski JPM (1991) Principles, methods and application of particle size analysis. Cambridge University Press, Cambridge, p 334CrossRefGoogle Scholar
  38. Tsantilis S, Kammler HK, Pratsinis SE (2002) Population balance modeling of flame synthesis of titania nanoparticles. Chem Eng Sci 57:2139–2156. doi:10.1016/S0009-2509(02)00107-0 CrossRefGoogle Scholar
  39. Tsantilis S, Pratsinis SE (2004) Soft- and hard-agglommerate aerosols made at high temperatures. Langmuir 20:5933–5939CrossRefGoogle Scholar
  40. Winterer M (2002) Nanocrystalline ceramics—synthesis and structure. Springer, Berlin, p 65CrossRefGoogle Scholar
  41. Zhang H, Banfield JF (1998) Thermodynamic analysis of phase stability of nanocrystalline titania. J Mater Chem 8:2073–2076. doi:10.1039/a802619j CrossRefGoogle Scholar
  42. Zhang J, Li M, Feng Z et al (2006) UV Raman spectroscopic study on TiO2. I. Phase transformation at the surface and in the bulk. J Phys Chem B 110:927–935. doi:10.1021/jp0552473 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Nanoparticle Process Technology, Faculty of Engineering and CENIDEUniversität Duisburg-EssenDuisburgGermany
  2. 2.Joint Research Laboratory NanomaterialsTechnical University Darmstadt and Karlsruhe Institute of TechnologyDarmstadtGermany

Personalised recommendations