Mycorrhizal fungi influence on silver uptake and membrane protein gene expression following silver nanoparticle exposure

Research Paper

Abstract

The rapid growth of nanotechnology and the high demand for nanomaterial use have greatly increased the risk of particle release into the environment. Understanding nanomaterial interactions with crop species and their associated microorganisms is critical to food safety and security. In the current study, tomato was inoculated with mycorrhizal fungi and subsequently exposed to 12, 24, or 36 mg/kg of 2- or 15-nm silver nanoparticles (Ag-NPs). Mycorrhizal (M) and non-mycorrhizal (NM) tomatoes exposed to 36 mg/kg of 2-nm Ag-NPs accumulated 1300 and 1600 μg/g silver in their tissues, respectively. Mycorrhizal plants accumulated 14% less silver compared to non-mycorrhizal plants. To begin to understand the mechanisms by which plants accumulate NPs, the expression of two aquaporin channel genes, the plasma membrane intrinsic protein (PIP) and the tonoplast membrane intrinsic protein (TIP), and one potassium channel (KC) gene were studied. In non-mycorrhizal plants, the expression of KC, PIP, and TIP was eight, five, and nine times higher than the control, respectively. These expressions for mycorrhizal plants were 5.8, 3.5, and 2 times higher than controls, respectively. The expression of KC and PIP, which are located on the plasma membrane, was 3.5 and 2.5, respectively, times higher than TIP, which is located on the tonoplast. PIP expression was significantly higher in NM tomatoes exposed to 12 mg/kg of 2-nm Ag-NPs compared to M plants. These results show that mycorrhizal colonization decreases Ag accumulation in NP-exposed plants and also moderates changes in expression level of membrane transport proteins.

Keywords

Aquaporins Membrane gene expression Mycorrhizal colonization Silver nanoparticles 

References

  1. Abd-Alla MH, Nafady NA, Khalaf DM (2016) Assessment of silver nanoparticles contamination on faba bean-Rhizobium leguminosarum bv. viciae-Glomus aggregatum symbiosis: implications for induction of autophagy process in root nodule. Agric Ecosyst Environ 218:163–177. doi:10.1016/j.agee.2015.11.022 CrossRefGoogle Scholar
  2. Ali SM, Yousef NMH, Nafady NA, Ali SM, Yousef NMH, Nafady NA (2015) Application of biosynthesized silver nanoparticles for the control of land snail Eobania vermiculata and some plant pathogenic fungi. J Nanomater:e218904. doi:10.1155/2015/218904
  3. Arruda SCC, Diniz Silva AL, Moretto Galazzi R, Antunes Azevedo R, Zezzi Arruda MA (2015) Nanoparticles applied to plant science: a review. Talanta 131:693–705. doi:10.1016/j.talanta.2014.08.050 CrossRefGoogle Scholar
  4. Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environmental Science & Technology 42(11):4133–4139. doi:10.1021/es7032718 CrossRefGoogle Scholar
  5. Bonfante P, Genre A (2008) Plants and arbuscular mycorrhizal fungi: an evolutionary-developmental perspective. Trends Plant Sci 13(9):492–498. doi:10.1016/j.tplants.2008.07.001 CrossRefGoogle Scholar
  6. Cornelis G, Hund-Rinke K, Kuhlbusch T, van den Brink N, Nickel C (2014) Fate and bioavailability of engineered nanoparticles in soils: a review. Crit Rev Environ Sci Technol 44(24). doi:10.1080/10643389.2013.829767
  7. De La Torre-Roche R, Hawthorne J, Musante C, Xing B, Newman LA, Ma X, White JC (2013) Impact of Ag nanoparticle exposure on p,p′-DDE bioaccumulation by Cucurbita pepo (zucchini) and Glycine max (soybean). Environmental Science & Technology 47(2):718–725. doi:10.1021/es3041829 CrossRefGoogle Scholar
  8. Dobias J, Bernier-Latmani R (2013) Silver release from silver nanoparticles in natural waters. Environmental Science & Technology 47(9):4140–4146. doi:10.1021/es304023p CrossRefGoogle Scholar
  9. Doolette CL, McLaughlin MJ, Kirby JK, Navarro DA (2015) Bioavailability of silver and silver sulfide nanoparticles to lettuce Lactuca sativa: effect of agricultural amendments on plant uptake. J Hazard Mater 300:788–795. doi:10.1016/j.jhazmat.2015.08.012 CrossRefGoogle Scholar
  10. Dubchak S, Ogar A, Mietelski JW, Turnau K (2010) Influence of silver and titanium nanoparticles on arbuscular mycorrhiza colonization and accumulation of radiocaesium in Helianthus annuus. Span J Agric Res 8(S1):S103–S108. doi:10.5424/sjar/201008S1-1228 CrossRefGoogle Scholar
  11. EPA Research on Nanomaterials [Overviews and Factsheets], (2016) Retrieved from https://www.epa.gov/chemical-research/research-nanomaterials
  12. Firmin S, Labidi S, Fontaine J, Laruelle F, Tisserant B, Nsanganwimana F, Pourrut B, Dalpé Y, Grandmougin A, Douay F, Shirali P, Verdi A, Sahraoui AL (2015) Arbuscular mycorrhizal fungal inoculation protects Miscanthus × giganteus against trace element toxicity in a highly metal-contaminated site. Sci Total Environ 527–528:91–99. doi:10.1016/j.scitotenv.2015.04.116 CrossRefGoogle Scholar
  13. Gadkar V, David-Schwartz R, Kunik T, Kapulnik Y (2001) Arbuscular mycorrhizal fungal colonization. Factors involved in host recognition. Plant Physiol 127(4):1493–1499. doi:10.1104/pp.010783 CrossRefGoogle Scholar
  14. Gaillet S, Rouanet J-M (2015) Silver nanoparticles: their potential toxic effects after oral exposure and underlying mechanisms—a review. Food Chem Toxicol 77:58–63. doi:10.1016/j.fct.2014.12.019 CrossRefGoogle Scholar
  15. Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84(3):489–500. doi:10.1111/j.1469-8137.1980.tb04556.x CrossRefGoogle Scholar
  16. Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environmental Science & Technology 43(24):9216–9222. doi:10.1021/es9015553 CrossRefGoogle Scholar
  17. Judy JD, Bertsch PM (2015) Bioavailability, toxicity, and fate of manufactured nanomaterials in terrestrial ecosystems. Adv Agron 123:1–64. doi:10.1016/B978-0-12-420225-2.00001-7 CrossRefGoogle Scholar
  18. Judy JD, Kirby JK, Creamer C, McLaughlin MJ, Fiebiger C, Wright C, Cavagnaro TR, Bertsch PM (2015) Effects of silver sulfide nanomaterials on mycorrhizal colonization of tomato plants and soil microbial communities in biosolid-amended soil. Environ Pollut 206:256–263. doi:10.1016/j.envpol.2015.07.002 CrossRefGoogle Scholar
  19. Kah M (2015) Nanopesticides and nanofertilizers: emerging contaminants or opportunities for risk mitigation? Frontiers in Chemistry 3. doi:10.3389/fchem.2015.00064
  20. Khabou W, Hajji B, Zouari M, Rigane H, Abdallah FB (2014) Arbuscular mycorrhizal fungi improve growth and mineral uptake of olive tree under gypsum substrate. Ecol Eng 73:290–296. doi:10.1016/j.ecoleng.2014.09.054 CrossRefGoogle Scholar
  21. Khan MN, Mobin M, Abbas ZK, AlMutairi KA, Siddiqui ZH (2016) Role of nanomaterials in plants under challenging environments. Plant Physiol Biochem 10:194–209. doi. 10.1016/j.plaphy.2016.05.038
  22. Khodakovskaya MV, de Silva K, Nedosekin DA, Dervishi E, Biris AS, Shashkov EV, Galanzha EI, Zharov VP (2011) Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proc Natl Acad Sci 108(3):1028–1033. doi:10.1073/pnas.1008856108 CrossRefGoogle Scholar
  23. Kim JS, Kuk E, Yu KN, Kim J-H, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang C-Y, Kim Y-K, Lee Y, Jeong DH, Cho M-H (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine 3(1):95–101. doi:10.1016/j.nano.2006.12.001 Google Scholar
  24. Krishnakumar, S., Balakrishnan, N., Muthukrishnan, R., & Kumar, S. R. (2013). Myth and mystery of soil mycorrhiza: a review, 8(33), 4706–4717.Google Scholar
  25. Latef AAHA, Chaoxing H (2011) Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Sci Hortic 127(3):228–233. doi:10.1016/j.scienta.2010.09.020 CrossRefGoogle Scholar
  26. Lee E-H, Eo J-K, Ka K-H, Eom A-H (2013) Diversity of arbuscular mycorrhizal fungi and their roles in ecosystems. Mycobiology 41(3):121–125. doi:10.5941/MYCO.2013.41.3.121 CrossRefGoogle Scholar
  27. Liu R, Ge Y, Holden PA, Cohen Y (2015a) Analysis of soil bacteria susceptibility to manufactured nanoparticles via data visualization. Beilstein Journal of Nanotechnology 6(1):1635–1651. doi:10.3762/bjnano.6.166 CrossRefGoogle Scholar
  28. Liu H, Yuan M, Tan S, Yang X, Lan Z, Jiang Q, Ye Z, Jing Y (2015b) Enhancement of arbuscular mycorrhizal fungus (Glomus versiforme) on the growth and Cd uptake by Cd-hyperaccumulator Solanum nigrum. Appl Soil Ecol 89:44–49. doi:10.1016/j.apsoil.2015.01.006 CrossRefGoogle Scholar
  29. Liu S, Zhao J, Ruan H, Wang W, Wu T, Cui W, Fan C (2013) Antibacterial and anti-adhesion effects of the silver nanoparticles-loaded poly (l-lactide) fibrous membrane. Mater Sci Eng C 33(3):1176–1182. doi:10.1016/j.msec.2012.12.008 CrossRefGoogle Scholar
  30. Liu Z, Ren G, Zhang T, Yang Z (2010) The inhibitory effects of nano-Ag on voltage gated potassium currents of hippocampal CA1 neurons. Environ Toxicol 26(5):552–558. doi:10.1002/tox.20586 CrossRefGoogle Scholar
  31. López-Moreno ML, Avilés LL, Pérez NG, Irizarry BÁ, Perales O, Cedeno-Mattei Y, Román F (2016) Effect of cobalt ferrite (CoFe2O4) nanoparticles on the growth and development of Lycopersicon lycopersicum (tomato plants). Sci Total Environ 550:45–52. doi:10.1016/j.scitotenv.2016.01.063 CrossRefGoogle Scholar
  32. Ma C, Chhikara S, Minocha R, Long S, Musante C, White JC, Xing B, Dhankher OP (2015) Reduced silver nanoparticle phytotoxicity in Crambe abyssinica with enhanced glutathione production by overexpressing bacterial γ-glutamylcysteine synthase. Environmental Science & Technology 49(16):10117–10126. doi:10.1021/acs.est.5b02007 CrossRefGoogle Scholar
  33. Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408(16):3053–3061. doi:10.1016/j.scitotenv.2010.03.031 CrossRefGoogle Scholar
  34. Mechri B, Tekaya M, Cheheb H, Attia F, Hammami M (2015) Accumulation of flavonoids and phenolic compounds in olive tree roots in response to mycorrhizal colonization: a possible mechanism for regulation of defense molecules. J Plant Physiol 185:40–43. doi:10.1016/j.jplph.2015.06.015 CrossRefGoogle Scholar
  35. Miransari M (2010) Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Plant Biol 12(4):563–569. doi:10.1111/j.1438-8677.2009.00308.x Google Scholar
  36. Mondal, N. K., Chowdhury, A., Dey, U., Mukhopadhya, P., Chatterjee, S., Das, K., & Datta, J. K. (2014). Green synthesis of silver nanoparticles and its application for mosquito control. Asian Pacific Journal of Tropical Disease, 4, Supplement 1, S204–S210. doi. 10.1016/S2222-1808(14)60440-0
  37. Mustafa G, Komatsu S (2016) Toxicity of heavy metals and metal-containing nanoparticles on plants. Biochimica et Biophysica Acta (BBA) Proteins and Proteomics. doi:10.1016/j.bbapap.2016.02.020 Google Scholar
  38. Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao A-J, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17(5):372–386. doi:10.1007/s10646-008-0214-0 CrossRefGoogle Scholar
  39. Oukarroum A, Barhoumi L, Pirastru L, Dewez D (2013) Silver nanoparticle toxicity effect on growth and cellular viability of the aquatic plant Lemna gibba. Environ Toxicol Chem 32(4):902–907. doi:10.1002/etc.2131 CrossRefGoogle Scholar
  40. Phillips JM, Hayman DA (1970) Improved Procedures for Clearing Roots and Staining Parasitic and Vesicular-Arbuscular Mycorrhizal Fungi for Rapid Assessment of Infection. Transactions of the British Mycological Society, 55, 158–161 doi:10.1016/S0007-1536(70)80110-3
  41. Piperigkou Z, Karamanou K, Engin AB, Gialeli C, Docea AO, Vynios DH, Pavăo MSG, Golokhvast KS, Shtilman MI, Argiris A, Shishatskaya E, Tsatsakis AM (2016) Emerging aspects of nanotoxicology in health and disease: from agriculture and food sector to cancer therapeutics. Food Chem Toxicol 91:42–57. doi:10.1016/j.fct.2016.03.003 CrossRefGoogle Scholar
  42. Qian H, Peng X, Han X, Ren J, Sun L, Fu Z (2013) Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. J Environ Sci 25(9):1947–1956. doi:10.1016/S1001-0742(12)60301-5 CrossRefGoogle Scholar
  43. Ravindran A, Chandran P, Khan SS (2013) Biofunctionalized silver nanoparticles: advances and prospects. Colloids Surf B: Biointerfaces 105:342–352. doi:10.1016/j.colsurfb.2012.07.036 CrossRefGoogle Scholar
  44. Reidy B, Haase A, Luch A, Dawson KA, Lynch I (2013) Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials 6(6):2295–2350. doi:10.3390/ma6062295 CrossRefGoogle Scholar
  45. Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59(8):3485–3498. doi:10.1021/jf104517j CrossRefGoogle Scholar
  46. Sillen WMA, Thijs S, Abbamondi GR, Janssen J, Weyens N, White JC, Vangronsveld J (2015) Effects of silver nanoparticles on soil microorganisms and maize biomass are linked in the rhizosphere. Soil Biol Biochem 91:14–22. doi:10.1016/j.soilbio.2015.08.019 CrossRefGoogle Scholar
  47. Simonin M, Guyonnet JP, Martins JMF, Ginot M, Richaume A (2015) Influence of soil properties on the toxicity of TiO2 nanoparticles on carbon mineralization and bacterial abundance. J Hazard Mater 283:529–535. doi:10.1016/j.jhazmat.2014.10.004 CrossRefGoogle Scholar
  48. Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environmental Science & Technology 43(24):9473–9479. doi:10.1021/es901695c CrossRefGoogle Scholar
  49. Suman TY, Elumalai D, Kaleena PK, Rajasree SRR (2013) GC–MS analysis of bioactive components and synthesis of silver nanoparticle using Ammannia baccifera aerial extract and its larvicidal activity against malaria and filariasis vectors. Ind Crop Prod 47:239–245. doi:10.1016/j.indcrop.2013.03.010 CrossRefGoogle Scholar
  50. Syu Y, Hung J-H, Chen J-C, Chuang H (2014) Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiol Biochem 83:57–64. doi:10.1016/j.plaphy.2014.07.010 CrossRefGoogle Scholar
  51. Takeuchi MT, Kojima M, Luetzow M (2014) State of the art on the initiatives and activities relevant to risk assessment and risk management of nanotechnologies in the food and agriculture sectors. Food Res Int 64:976–981. doi:10.1016/j.foodres.2014.03.022 CrossRefGoogle Scholar
  52. Taylor AF, Rylott EL, Anderson CWN, Bruce NC (2014) Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold. PLoS One 9(4):e93793. doi:10.1371/journal.pone.0093793 CrossRefGoogle Scholar
  53. Treseder KK (2013) The extent of mycorrhizal colonization of roots and its influence on plant growth and phosphorus content. Plant Soil 371(1–2):1–13 http://doi.org/10.1007/s11104-013-1681-5 CrossRefGoogle Scholar
  54. Van Aken B (2015) Gene expression changes in plants and microorganisms exposed to nanomaterials. Curr Opin Biotechnol 33:206–219. doi:10.1016/j.copbio.2015.03.005 CrossRefGoogle Scholar
  55. Wang B, Qiu Y-L (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16(5):299–363. doi:10.1007/s00572-005-0033-6 CrossRefGoogle Scholar
  56. Wang F, Liu X, Shi Z, Tong R, Adams CA, Shi X (2016a) Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants—a soil microcosm experiment. Chemosphere 147:88–97. doi:10.1016/j.chemosphere.2015.12.076 CrossRefGoogle Scholar
  57. Wang P, Lombi E, Zhao F-J, Kopittke PM (2016b) Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci 21(8):699–712. http://doi.org/10.1016/j.tplants.2016.04.005
  58. Yang Y, Song Y, Scheller HV, Ghosh A, Ban Y, Chen H, Tang M (2015) Community structure of arbuscular mycorrhizal fungi associated with Robinia pseudoacacia in uncontaminated and heavy metal contaminated soils. Soil Biol Biochem 86:146–158. doi:10.1016/j.soilbio.2015.03.018 CrossRefGoogle Scholar
  59. Yin L, Colman BP, McGill BM, Wright JP, Bernhardt ES (2012) Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants. PLoS One 7(10):e47674. doi:10.1371/journal.pone.0047674 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.College of Environmental Science and ForestryState University of New YorkSyracuseUSA
  2. 2.Merrimack CollegeNorth AndoverUSA
  3. 3.Connecticut Agricultural Experiment StationNew HavenUSA

Personalised recommendations