Advertisement

Temperature effects on the stability of gold nanoparticles in the presence of a cationic thermoresponsive copolymer

  • Ramón Pamies
  • Kaizheng Zhu
  • Anna-Lena KjøniksenEmail author
  • Bo Nyström
Research Paper

Abstract

New hybrid complexes composed by a thermoresponsive copolymer and gold nanoparticles (Rh = 22 nm) have been characterized by dynamic light scattering (DLS) and UV-visible spectroscopy. A cationic thermoresponsive triblock copolymer, methoxy-poly(ethylene glycol)-block-poly(N-isopropylacrylamide)-block-poly((3-acrylamidopropyl) trimethyl ammonium chloride), abbreviated as MPEG-b-PNIPAAM-b-PN(+), has been synthesized by atom transfer radical polymerization (ATRP). We have evaluated the thermal response at low concentrations of this triblock copolymer in bulk solution and the effect of concentration on the interaction between this thermosensitive copolymer and the gold nanoparticles (AuNPs) to form new hybrid complexes (60–1000 nm) at different temperatures. The thermosensitive nature of the copolymer causes both aggregation and contraction of the aggregates at elevated temperatures. The AuNPs were found to be separately embedded in the hybrid complexes. Interestingly, the AuNPs prevent macroscopic phase separation of the system at high temperatures.

Graphical Abstract

Keywords

Dynamic light scattering Surface Plasmon resonance Thermoresponsive polymers Gold nanoparticles 

Notes

Acknowledgments

Financial support has been provided by Ministerio de Economía y Competitividad within project CTQ-2012-33717 and Norwegian Research Council through a FRINAT project (177665/V3). R.P. thanks the financial support provided by Fundación Séneca—CARM within grant 19877/GERM/15.

References

  1. Al-Manasir N, Kjøniksen AL, Nyström B (2009) Preparation and characterization of cross-linked polymeric nanoparticles for enhanced oil recovery applications. J Appl Polym Sci 113:1916–1924CrossRefGoogle Scholar
  2. Almeida VR, Barrios CA, Panepucci RR, Lipson M (2004) All-optical control of light on a silicon chip. Nature 431:1081–1084CrossRefGoogle Scholar
  3. Bayati S, Zhu K, Trinh LTT, Kjøniksen A-L, Nyström B (2012) Effects of temperature and salt addition on the association behavior of charged amphiphilic diblock copolymers in aqueous solution. J Phys Chem B 116:11386–11395CrossRefGoogle Scholar
  4. Bayati S, Pamies R, Volden S, Zhu K, Kjøniksen A-L, Glomm W, Nyström B (2013) Influence of poly(ethylene glycol) block length on the adsorption of thermoresponsive copolymers onto gold surfaces. J Mater Sci 48:7055–7062CrossRefGoogle Scholar
  5. Bu H, Nguyen G, Kjøniksen A (2006) Effects of the quantity and structure of hydrophobes on the properties of hydrophobically modified alginates in aqueous solutions. Polym Bull 57:563–574CrossRefGoogle Scholar
  6. Choucair A, Eisenberg A (2003) Control of amphiphilic block copolymer morphologies using solution conditions. Eur Phys J E 10:37–44CrossRefGoogle Scholar
  7. Correa S, Dreaden EC, Gu L, Hammond PT (2016) Engineering nanolayered particles for modular drug delivery. J Control Release. doi: 10.1016/j.jconrel.2016.01.040 Google Scholar
  8. Das S, Debnath N, Mitra S, Datta A, Goswami A (2012) Comparative analysis of stability and toxicity profile of three differently capped gold nanoparticles for biomedical usage. Biometals 25:1009–1022CrossRefGoogle Scholar
  9. Forster S, Antonietti M (1998) Amphiphilic block copolymers in structure-controlled nanomaterial hybrids. Adv Mater 10:195–217CrossRefGoogle Scholar
  10. Heskins M, Guillet JE (1968) Solution properties of poly(N-isopropylacrylamide). J Macromol Sci Part A-Chem 2:1441–1455CrossRefGoogle Scholar
  11. Hutter E, Fendler JH (2004) Exploitation of localized surface plasmon resonance. Adv Mater 16:1685–1706CrossRefGoogle Scholar
  12. Jensen T, Kelly L, Lazarides A, Schatz GC (1999) Electrodynamics of noble metal nanoparticles and nanoparticle clusters. J Clust Sci 10:295–317CrossRefGoogle Scholar
  13. Jeon J, Park S, Lee BJ (2016) Analysis on the performance of a flat-plate volumetric solar collector using blended plasmonic nanofluid. Sol Energy 132:247–256CrossRefGoogle Scholar
  14. Jonassen H, Kjøniksen A-L (2011) Optical-scattering method for the determination of the local polymer concentration inside nanoparticles. Phys Rev E 84:022401CrossRefGoogle Scholar
  15. Jonassen H, Kjøniksen AL, Hiorth M (2012) Stability of chitosan nanoparticles cross-linked with tripolyphosphate. Biomacromolecules 13:3747–3756CrossRefGoogle Scholar
  16. Kjøniksen A, Nyström B, Tenhu H (2003) Characterisation of thermally controlled chain association in aqueous solutions of poly(N-isopropyl acrylamide)-g-poly(ethylene oxide) dynamic light scattering. Colloids Surf A Physicochem Eng Asp 228:75–83CrossRefGoogle Scholar
  17. Kjøniksen A, Zhu K, Karlsson G, Nyström B (2009) Novel transition behavior in aqueous solutions of a charged thermoresponsive triblock copolymer. Colloids Surf A Physicochem Eng Asp 333:32–45CrossRefGoogle Scholar
  18. Matyjaszewski K, Xia JH (2001) Atom transfer radical polymerization. Chem Rev 101:2921–2990CrossRefGoogle Scholar
  19. Melancon MP, Lu W, Yang Z, Zhang R, Cheng Z, Elliot AM, Stafford J, Olson T, Zhang JZ, Li C (2008) In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photothermal ablation therapy. Mol Cancer Ther 7:1730–1739CrossRefGoogle Scholar
  20. Moores A, Goettmann F (2006) The plasmon band in noble metal nanoparticles: an introduction to theory and applications. New J Chem 30:1121–1132CrossRefGoogle Scholar
  21. Motokawa R, Morishita K, Koizumi S, Nakahira T, Annaka M (2005) Thermosensitive diblock copolymer of poly(N-isopropylacrylamide) and poly(ethylene glycol) in water: polymer preparation and solution behavior. Macromolecules 38:5748–5760CrossRefGoogle Scholar
  22. Muthukumar M, Ober CK, Thomas EL (1997) Competing interactions and levels of ordering in self-organizing polymeric materials. Science 277:1225–1232CrossRefGoogle Scholar
  23. Nichifor M, Lopes S, Bastos M, Lopes A (2004) Self-aggregation of amphiphilic cationic polyelectrolytes based on polysaccharides. J Phys Chem B 108:16463–16472CrossRefGoogle Scholar
  24. Olivier BJ, Sorensen CM (1990) Variable aggregation rates in colloidal gold - kernel homogeneity dependence on aggregant concentration. Phys Rev A 41:2093–2100CrossRefGoogle Scholar
  25. Ortega A, Pamies R, Zhu KZ, Kjøniksen AL, Nyström B, de la Torre JG (2012) Characterization of low molecular mass thermosensitive diblock copolymers and their self-assembly by means of analytical ultracentrifugation. Colloid Polym Sci 290:297–306CrossRefGoogle Scholar
  26. Pamies R, Zhu K, Kjøniksen A-L, Nyström B (2009) Thermal response of low molecular weight poly-(N-isopropylacrylamide) polymers in aqueous solution. Polym Bull 62:487–502CrossRefGoogle Scholar
  27. Pamies R, Zhu K, Volden S, Kjøniksen A, Karlsson G, Glomm W, Nyström B (2010) Temperature-induced flocculation of gold particles with an adsorbed thermoresponsive cationic copolymer. J Phys Chem C 114:21960–21968CrossRefGoogle Scholar
  28. Pamies R, Cifre J, Espín V, Collado-González M, Baños F, Torre J (2014) Aggregation behaviour of gold nanoparticles in saline aqueous media. J Nanopart Res 16:1–11CrossRefGoogle Scholar
  29. Piçarra S, Martinho JMG (2001) Viscoelastic effects on dilute polymer solutions phase demixing: fluorescence study of a poly(ε-caprolactone) chain in THF. Macromolecules 34:53–58CrossRefGoogle Scholar
  30. Rahme K, Vicendo P, Ayela C, Gaillard C, Payre B, Mingotaud C, Gauffre F (2009) A simple protocol to stabilize gold nanoparticles using amphiphilic block copolymers: stability studies and viable cellular uptake. Chemistry-a European Journal 15:11151–11159CrossRefGoogle Scholar
  31. Rzaev ZMO, Dinçer S, Pişkin E (2007) Functional copolymers of N-isopropylacrylamide for bioengineering applications. Prog Polym Sci 32:534–595CrossRefGoogle Scholar
  32. Scarpa JS, Mueller DD, Klotz IM (1967) Slow hydrogen-deuterium exchange in a non-.Alpha.-helical polyamide. J Am Chem Soc 89:6024–6030CrossRefGoogle Scholar
  33. Schild HG (1992) Poly (N-isopropylacrylamide)—experiment, theory and application. Prog Polym Sci 17:163–249CrossRefGoogle Scholar
  34. Schmidt R, Pamies R, Kjøniksen A, Zhu K, Cifre J, Nyström B, de la Torre J (2010) Single-molecule behavior of asymmetric thermoresponsive amphiphilic copolymers in dilute solution. J Phys Chem B 114:8887–8893CrossRefGoogle Scholar
  35. Shashkina YA, Zaroslov YD, Smirnov VA, Philippova OE, Khokhlov AR, Pryakhina TA, Churochkina NA (2003) Hydrophobic aggregation in aqueous solutions of hydrophobically modified polyacrylamide in the vicinity of overlap concentration. Polymer 44:2289–2293CrossRefGoogle Scholar
  36. Siegert AJF (1943) On the fluctuations in signals returned by many independently moving scatterers Massachusetts Institute of Technology, Radiation Laboratory Report no:465Google Scholar
  37. Siu MH, He C, Wu C (2003) Formation of mesoglobular phase of amphiphilic copolymer chains in dilute solution: effect of comonomer distribution. Macromolecules 36:6588–6592CrossRefGoogle Scholar
  38. Soenen SJ, Manshian B, Montenegro JM, Amin F, Meermann B, Thiron T, Cornelissen M, Vanhaecke F, Doak S, Parak WJ, De Smedt S, Braeckmans K (2012) Cytotoxic effects of gold nanoparticles: a Multiparametric study. ACS Nano 6:5767–5783CrossRefGoogle Scholar
  39. Tanaka H (1992) Appearance of a moving droplet phase and unusual network-like or sponge-like patterns in a phase-separating polymer-solution with a double-well-shaped phase-diagram. Macromolecules 25:6377–6380CrossRefGoogle Scholar
  40. Tanaka H (1993) Unusual phase separation in a polymer solution caused by asymmetric molecular dynamics. Phys Rev Lett 71:3158–3161CrossRefGoogle Scholar
  41. Taylor R, Phelan P, Otanicar T, Adrian R, Prasher R (2011) Nanofluid optical property characterization: towards efficient direct absorption solar collectors. Nanoscale Res Lett 6:1–11CrossRefGoogle Scholar
  42. Thomann I, Pinaud BA, Chen Z, Clemens BM, Jaramillo TF, Brongersma ML (2011) Plasmon enhanced solar-to-fuel energy conversion. Nano Lett 11:3440–3446CrossRefGoogle Scholar
  43. Trinh L, Kjøniksen A, Zhu K, Knudsen K, Volden S, Glomm W, Nyström B (2009) Slow salt-induced aggregation of citrate-covered silver particles in aqueous solutions of cellulose derivatives. Colloid Polym Sci 287:1391–1404CrossRefGoogle Scholar
  44. Trinh LTT, Lambermont-Thijs HML, Schubert US, Hoogenboom R, Kjøniksen A-L (2012) Thermoresponsive poly(2-oxazoline) block copolymers exhibiting two cloud points: complex multistep assembly behavior. Macromolecules 45:4337–4345CrossRefGoogle Scholar
  45. Virtanen J, Holappa S, Lemmetyinen H, Tenhu H (2002) Aggregation in aqueous poly(N-isopropylacrylamide)-block-poly(ethylene oxide) solutions studied by fluorescence spectroscopy and light scattering. Macromolecules 35:4763–4769CrossRefGoogle Scholar
  46. Volden S, Kjøniksen A, Zhu K, Genzer J, Nyström B, Glomm W (2010) Temperature-dependent optical properties of gold nanoparticles coated with a charged diblock copolymer and an uncharged triblock copolymer. ACS Nano 4:1187–1201CrossRefGoogle Scholar
  47. Volden S, Trinh LTT, Kjøniksen A-L, Yasuda M, Nyström B, Glomm WR (2011) Gold nanoparticles affect thermoresponse and aggregation properties of Mesoscopic immunoglobulin G clusters. J Phys Chem C 115:11390–11399CrossRefGoogle Scholar
  48. Vorobyova O, Lau W, Winnik MA (2001) Aggregation number determination in aqueous solutions of a hydrophobically modified poly(ethylene oxide) by fluorescence probe techniques. Langmuir 17:1357–1366CrossRefGoogle Scholar
  49. Wang JS, Matyjaszewski K (1995) Controlled living radical polymerization-atom-transfer radical polymerization in the presence of transition-metal complexes. J Am Chem Soc 117:5614–5615CrossRefGoogle Scholar
  50. Wang W, Mauroy H, Zhu KZ, Knudsen KD, Kjøniksen AL, Nyström B, Sande SA (2012) Complex coacervate micelles formed by a C18-capped cationic triblock thermoresponsive copolymer interacting with SDS. Soft Matter 8:11514–11525CrossRefGoogle Scholar
  51. Wei H, Cheng S-X, Zhang X-Z, Zhuo R-X (2009) Thermo-sensitive polymeric micelles based on poly(N-isopropylacrylamide) as drug carriers. Prog Polym Sci 34:893–910CrossRefGoogle Scholar
  52. Yavuz MS, Cheng YY, Chen JY, Cobley CM, Zhang Q, Rycenga M, Xie JW, Kim C, Song KH, Schwartz AG, Wang LHV, Xia YN (2009) Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat Mater 8:935–939CrossRefGoogle Scholar
  53. Zhang GZ, Wu C (2006) Folding and formation of mesoglobules in dilute copolymer solutions. In: Khokhlov AR (ed) Conformation-dependent Design of Sequences in copolymers I, pp. 101–176CrossRefGoogle Scholar
  54. Zhu PW, Napper DH (1999) Aggregation of block copolymer microgels of poly-(N-isopropylacrylamide) and poly(ethylene glycol). Macromolecules 32:2068–2070CrossRefGoogle Scholar
  55. Zhu K, Jin H, Kjøniksen A, Nyström B (2007) Anomalous transition in aqueous solutions of a thermoresponsive amphiphilic diblock copolymer. J Phys Chem B 111:10862–10870CrossRefGoogle Scholar
  56. Zhu K, Pamies R, Kjøniksen A-L, Nyström B (2008) Temperature-induced intermicellization of "hairy" and "crew-cut" micelles in an aqueous solution of a thermoresponsive copolymer. Langmuir 24:14227–14233CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Ramón Pamies
    • 1
    • 2
  • Kaizheng Zhu
    • 3
  • Anna-Lena Kjøniksen
    • 4
    Email author
  • Bo Nyström
    • 3
  1. 1.Department of Material Engineering and ManufacturingTechnical University of CartagenaCartagena, MurciaSpain
  2. 2.Department of Physical ChemistryUniversity of MurciaMurciaSpain
  3. 3.Department of ChemistryUniversity of OsloOsloNorway
  4. 4.Faculty of EngineeringØstfold University CollegeHaldenNorway

Personalised recommendations