Advertisement

Size and thickness effect on magnetic structures of maghemite hollow magnetic nanoparticles

  • Fatima Sayed
  • Yvan LabayeEmail author
  • Rodaina Sayed Hassan
  • Fouad El Haj Hassan
  • Nader YaacoubEmail author
  • Jean-Marc Greneche
Research Paper

Abstract

The effect of surface anisotropy on the magnetic ground state of hollow maghemite nanoparticles is investigated using atomistic Monte Carlo simulation. The computer modeling is carried on hollow nanostructures as a function of size and shell thickness. It is found that the large contribution of the surface anisotropy imposes a “throttled” spin structure where the moments located at the outer surface tend to orient normal to the surface while those located at the inner surface appear to be more aligned. For increasing values of surface anisotropy in the frame of a radial model, the magnetic moments become radially oriented either inward or outward giving rise to a “hedgehog” configuration with nearly zero net magnetization. We also show the effect of the size of hollow nanoparticle on the spin behavior where the spin non-collinearity increases (for fixed value of surface anisotropy) as the diameter of the hollow nanoparticle increases due to the significant increase in surface-to-volume ratio, the thickness being constant. Moreover, the thickness of the hollow nanoparticle shell influences the spin configuration and thus the relation between surface anisotropy and the size or the thickness of the hollow nanoparticle is established.

Keywords

Hollow magnetic nanoparticles Maghemite Surface anisotropy Spin structure Monte Carlo simulation Modeling and simulation 

References

  1. Cabot A, Alivisatos AP, Puntes VF, Balcells L, Iglesias O, Labarta A (2009) Magnetic domains and surface effects in hollow maghemite nanoparticles. Phys Rev B 79:094419-7CrossRefGoogle Scholar
  2. Dormann JL, Fiorani D, Tronc E (1997) Magnetic relaxation in small particles systems. Adv Chem Phys 98:293–494Google Scholar
  3. Fan HJ, Gosele U, Zacharias M (2007) Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: a review. Small 3:1660–1671CrossRefGoogle Scholar
  4. Gehring AU, Fischer H, Louvel M, Kunze K, Weidler PG (2009) High temperature stability of natural maghemite: a magnetic and spectroscopic study. Geophys J Int 179(3):1361–1371CrossRefGoogle Scholar
  5. Iglesias O, Labarta A, Battle X (2008) Exchange bias phenomenology and models of core/shell nanoparticles. J Nanosci Nanotechnol 8:2761–2780Google Scholar
  6. Jaffari GH, Ceylan A, Ni C, Shah SI (2010) Enhancement of surface spin disorder in hollow NiFe2O4 nanoparticles. J Appl Phys 107:013910–013917CrossRefGoogle Scholar
  7. Jaffari GH, Ceylan A, Bui HP, Beebe TP Jr, Ozcan S, Shah SI (2012) Non-equilibrium cation distribution and enhanced spin disorder in hollow CoFe2O4 nanoparticles. J Phys: Condens Matter 24:336004–336009Google Scholar
  8. Kachkachi H, Ezzir A, Nogues M, Tronc E (2000) Surface effects in nanoparticles: application to maghemite γ-Fe2O3. Eur Phys J B 14:681–689CrossRefGoogle Scholar
  9. Khurshid H, Li W, Phan MH, Mukherjee P, Hadjipanayis GC, Srikanth H (2012) Surface spin disorder and exchange-bias in hollow maghemite nanoparticles. Appl Phys Lett 101:022403–022405CrossRefGoogle Scholar
  10. Khurshid H, Lampen-Kelley P, Iglesias O, Alonso J, Phan M-H, Sun C-J, Saboungi M-L, Srikanth H (2015) Spin-glass-like freezing of inner and outer surface layers in hollow γ-Fe2O3 nanoparticles. Sci Rep 5:15054CrossRefGoogle Scholar
  11. Kodama RH, Berkowitz AE (1999) Atomic-scale magnetic modeling of oxide nanoparticles. Phys Rev B 59:6321–6336CrossRefGoogle Scholar
  12. Kodama RH, Berkowitz AE, McNiff EJ Jr, Foner S (1996) Surface spin disorder in NiFe2O4 nanoparticles. Phys Rev Lett 77:394–397CrossRefGoogle Scholar
  13. Labaye Y, Crisan O, Berger L, Greneche JM, Coey JMD (2002) Surface anisotropy in ferromagnetic nanoparticles. J Appl Phys 91:8715–8717CrossRefGoogle Scholar
  14. Mørup S, Frandsen C, Hansen MF (2010) Magnetic properties of nanoparticles. In: Narlikar AV, Fu YY (eds) The Oxford handbook of nanoscience and technology: materials, structures, properties and characterization techniques. Oxford University Press, OxfordGoogle Scholar
  15. Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:R167–R181CrossRefGoogle Scholar
  16. Restrepo J, Labaye Y, Berger L, Greneche JM (2004) Effects of surface anisotropy and vacancies in ferromagnetic nanoparticles. J Magn Magn Mater 272:681–682CrossRefGoogle Scholar
  17. Restrepo J, Labaye Y, Greneche JM (2006) Surface anisotropy in maghemite nanoparticles. Phys B 384:221–223CrossRefGoogle Scholar
  18. Tronc E, Ezzir A, Cherkaoui R, Chanéac C, Noguès M, Kachkachi H, Fiorani D, Testa AM, Greneche JM, Jolivet JP (2000) Surface-related properties of γ-Fe2O3 nanoparticles. J Magn Magn Mater 221:63–79CrossRefGoogle Scholar
  19. Wiemann JA, Carpenter EE, Wiggins J, Zhou WL, Tang JK, Li SC, John VT, Long GJ, Mohan A (2000) Magnetoresistance of a (γ-Fe2O3)80Ag20 nanocomposite prepared in reverse micelles. J Appl Phys 87:7001–7003CrossRefGoogle Scholar
  20. Sayed F, Yaacoub N, Labaye Y, Sayed Hassan R, Singh G, Greneche JM, Mathieu R, Kumar PA, Khurshid H, Srikanth H, Haja G, Agostinelli E, Peddis D Speromagnetic like behavior in ultra thin iron oxide hollow nanoparticles (to be submitted)Google Scholar
  21. Zboril R, Mashlan M, Petridis D (2002) Iron(III) oxides from thermal processes synthesis, structural and magnetic properties, Mössbauer spectroscopy characterization, and applications. Chem Mater 14:969–982CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Fatima Sayed
    • 1
    • 2
  • Yvan Labaye
    • 1
    Email author
  • Rodaina Sayed Hassan
    • 2
  • Fouad El Haj Hassan
    • 2
  • Nader Yaacoub
    • 1
    Email author
  • Jean-Marc Greneche
    • 1
  1. 1.Institut des Molécules et Matériaux du Mans CNRS UMR-6283Université du MaineLe MansFrance
  2. 2.MPLABUniversité Libanaise, Faculté des Sciences Section IBeyrouthLebanon

Personalised recommendations