Advertisement

Structural, electronic, and magnetic properties of Fe x Co y Pd z (x + y + z ≤ 7) clusters: a density functional theory study

  • Alejandro Varas
  • F. Aguilera-Granja
  • José Rogan
  • Miguel Kiwi
Research Paper

Abstract

Transition metal alloy nanoparticles are of interest both theoretically and experimentally, particularly due to their potential technological applications, and to their novel structural and magnetic properties in the subnanometer region. Here we compute structural parameters, chemical and magnetic properties, and the fragmentation channels of Fe\(_x\)Co\(_y\)Pd\(_z\) nanoparticles, for \(x+y+z\, \le \,7\), and compare our results with macroscopic systems whenever it is feasible. We carry out density functional theory calculations, as implemented in the SIESTA code, for all possible concentrations (i.e., all x-, y-, and z-values). The seeds for the possible homotops are built using a semiempirical Gupta potential; these, and additional low coordinated conformations, are thereafter subject to reoptimization by means of the SIESTA code. To the best of our knowledge, this is the first time that such kind of calculations are performed for all the possible compositions of up to 7 atom ternary nanoclusters. We find that the binding is strongest in the FeCo-rich region and weakest for pristine Pd for all the sizes we considered. Interatomic distances in general decrease monotonically, as the FeCo region is approached. The total magnetic moment varies almost continuously over the composition range, with the large Fe moment being quenched by the addition of Pd and/or Co; however, an almost continuous range of the moments magnitude can be achieved, which allows for fine tuning magnetism by controlling the composition. As far as the fragmentation channels are concerned, for neutral, cationic, and anionic clusters, the most likely path is through atomic Pd\(^{0}\), Pd\(^{+}\), and Pd\(^{-}\), when Pd is present in the cluster. However, in the absence of Pd, the most likely fragmentation channel is through the majority element. Molecular fragmentation channels are only observed for very small cluster sizes.

Keywords

Metallic nanoclusters Magnetic clusters Modeling and simulations 

Notes

Acknowledgments

This work was supported by the Fondo Nacional de Investigaciones Científicas y Tecnológicas (FONDECYT, Chile) under Grants #1160639 and 1130272 (MK and JR), and Financiamiento Basal para Centros Científicos y Tecnológicos de Excelencia-FB0807 (JR and MK). FAG acknowledges financial support from DIPC during an academic stay, and thanks Andres Vega and Carlos Balbás for helpful discussions, as well as D. Lasa from the DIPC computer center for his valuable help, and J. Limon for the support of the UASLP Computer Center.

Supplementary material

11051_2016_3554_MOESM1_ESM.pdf (3.4 mb)
Supplementary material 1 (PDF 3450 kb)

References

  1. Aguilera-Del-Toro RH, Aguilera-Granja F, Vega A, Balbás LC (2014) Structure, fragmentation patterns, and magnetic properties of small cobalt oxide clusters. Phys Chem Chem Phys 16(39):21732–21741. doi: 10.1039/c4cp03370a, http://dx.doi.org/10.1039/C4CP03370A
  2. Aguilera-Granja F, García-Fuente A, Vega A (2008) Comparative ab initio study of the structural, electronic, and magnetic trends of isoelectronic late 3d and 4d transition metal clusters. Phys Rev B 78:134,425. doi: 10.1103/PhysRevB.78.134425, http://link.aps.org/doi/10.1103/PhysRevB.78.134425
  3. Aguilera-Granja F, Piotrowski MJ, da Silva JL (2013) Structural and electronic properties of TM23-pAgp (TM = Ni, Pd, and Pt) clusters in the dilute limit (p = 0-4): a density functional theory investigation. Eur Phys J D 67(2):1–7. doi: 10.1140/epjd/e2012-30447-y, http://dx.doi.org/10.1140/epjd/e2012-30447-y
  4. Barreteau C, Guirado-López R, Spanjaard D, Desjonquères MC, Oleś AM (2000) spd tight-binding model of magnetism in transition metals: Application to Rh and Pd clusters and slabs. Phys Rev B 61(11):7781–7794. doi: 10.1103/PhysRevB.61.7781, http://link.aps.org/doi/10.1103/PhysRevB.61.7781
  5. Billas IML, Châtelain A, de Heer W (1994) Magnetism from the Atom to the Bulk in Iron, Cobalt, and Nickel Clusters. Science 265:1682. doi: 10.1126/science.265.5179.1682, http://science.sciencemag.org/content/265/5179/1682 CrossRefGoogle Scholar
  6. Bonačic-Koutećký V, Fantucci P, Koutecky J (1991) Quantum chemistry of small clusters of elements of groups Ia, Ib, and IIa: fundamental concepts, predictions, and interpretation of experiments. Chem Rev 91:1035. doi: 10.1021/cr00005a016 CrossRefGoogle Scholar
  7. Cantera-López H, Montejano-Carrizales JM, Aguilera-Granja F, Morán-López JL (2010) Theoretical study of bimetallic magnetic nanostructures: ConPdN-n, n = 0,1,...N, N = 3,5,7,13. Eur Phys J D 57(1):61–69. doi: 10.1140/epjd/e2010-00018-7, http://www.springerlink.com/index/10.1140/epjd/e2010-00018-7
  8. Castleman AW (2011) From Elements to Clusters: The Periodic Table Revisited. J Phys Chem Lett 2:1062–1069. doi: 10.1021/jz200215s CrossRefGoogle Scholar
  9. Cleri F, Rosato V (1993) Tight-binding potentials for transition metals and alloys. Phys Rev B 48:22–33. doi: 10.1103/PhysRevB.48.22, http://link.aps.org/doi/10.1103/PhysRevB.48.22
  10. Ducastelle F (1991) In: de Boer FR, Petifor DG (eds) Order and Phase Stability in Alloys. North-Holland, AmsterdamGoogle Scholar
  11. Fallah V, Ofori-Opoku N, Stolle J, Provatas N, Esmaeili S (2013) Simulation of early-stage clustering in ternary metal alloys using the phase-field crystal method. Acta Mater 61(10):3653–3666. doi: 10.1016/j.actamat.2013.02.053 CrossRefGoogle Scholar
  12. Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: From Theory to Applications of Alloy Clusters and Nanoparticles. Chem Rev 108(3):845–910. doi: 10.1021/cr040090g, http://dx.doi.org/10.1021/cr040090g, and references therein
  13. Guillopé M, Legrand B (1989) (110) Surface stability in noble metals. Surf Sci 215(3):577–595. doi: 10.1016/0039-6028(89)90277-X, http://www.sciencedirect.com/science/article/pii/003960288990277X
  14. Gupta RP (1981) Lattice relaxation at a metal surface. Phys Rev B 23:6265–6270. doi: 10.1103/PhysRevB.23.6265, http://link.aps.org/doi/10.1103/PhysRevB.23.6265
  15. Guzmán-Ramírez G, Robles J, Vega A, Aguilera-Granja F (2011) Stability, structural, and magnetic phase diagrams of ternary ferromagnetic 3d-transition-metal clusters with five and six atoms. J Chem Phys 134(5):054101. doi: 10.1063/1.3533954, http://scitation.aip.org/content/aip/journal/jcp/134/5/10.1063/1.3533954
  16. Guzmán-Ramírez G, Salvador P, Robles J, Vega A, Aguilera-Granja F (2013) Density functional study of ternary FexCoyNiz (x + y + z = 7) clusters. Theor Chem Acc 132:1318. doi: 10.1007/s00214-012-1318-4, http://dx.doi.org/10.1007/s00214-012-1318-4
  17. Kittel C (1996) Introduction to Solid State Physics, 7th edn. Wiley, New YorkGoogle Scholar
  18. Kleinman L, Bylander DM (1982) Efficacious Form for Model Pseudopotentials. Phys Rev Lett 48:1425–1428. doi: 10.1103/PhysRevLett.48.1425, http://link.aps.org/doi/10.1103/PhysRevLett.48.1425
  19. Knickelbein MB (2001) Experimental Observation of Superparamagnetism in Manganese Clusters. Phys Rev Lett 86:5255–5257.  10.1103/PhysRevLett.86.5255, http://link.aps.org/doi/10.1103/PhysRevLett.86.5255
  20. Lee J, Scheraga H, Rackovsky S (1997) New optimization method for conformational energy calculations on polypeptides: conformational space annealing. J Comput Chem 18:1222. doi: 10.1002/(SICI)1096-987X(19970715)18:9<1222::AID-JCC10>3.0.CO;2-7 CrossRefGoogle Scholar
  21. Lee J, Lee IH, Lee J (2003) Unbiased global optimization of Lennard-Jones clusters for N≤201 using the conformational space annealing method. Phys Rev Lett 91(080):201. doi: 10.1103/PhysRevLett.91.080201 Google Scholar
  22. Ma L, Wang J, Hao Y, Wang G (2013) Density functional theory study of FePdn (n = 2–14) clusters and interactions with small molecules. Comput Mater Sci 68:166–173. doi: 10.1016/j.commatsci.2012.10.014, http://www.sciencedirect.com/science/article/pii/S0927025612006155
  23. Martienssen W, Warlimont H (eds) (2005) Springer Handbook of Condensed Matter and Materials Data, 1st edn. Springer, BerlinGoogle Scholar
  24. Martínez-Herrera FJ, Mejía-Lira F, Aguilera-Granja F, Morán-López JL (1985) Theory of phase equilibria in Co-Fe alloys. Phys Rev B 31:1686–1688. doi: 10.1103/PhysRevB.31.1686, http://link.aps.org/doi/10.1103/PhysRevB.31.1686
  25. Massalski TB, Okamoto H, Subramanion PK, Kacprzak L (eds) (1990) Binary Alloy Phase Diagrams, 2nd edn. American Society for Metals Park, OHGoogle Scholar
  26. Miralrio A, Sansores LE (2014) Electronic structure and stability of binary and ternary aluminum-bismuth-nitrogen nanoclusters. Int J Quantum Chem. doi: 10.1002/qua.24693, http://dx.doi.org/10.1002/qua.24693
  27. Mokkath JH (2014) Magnetism, structure and chemical order in small CoPd clusters: a first-principles study. J Magn Magn Mater 349:109–115. doi: 10.1016/j.jmmm.2013.08.050, http://www.sciencedirect.com/science/article/pii/S030488531300615X
  28. Montejano-Carrizales J, Aguilera-Granja F, Morán-López J (2011) Structural and magnetic properties of FemYn (m + n=7, Y = Ru, Rh, Pd, and Pt) nanoalloys. Eur Phys J D 64(1):53–62. doi: 10.1140/epjd/e2011-20178-0, http://www.springerlink.com/index/10.1140/epjd/e2011-20178-0
  29. Muñoz F, Rogan J, Valdivia J, Varas A, Kiwi M (2013a) Binary cluster collision dynamics and minimum energy conformations. Phys B: Condens Matter 427:76–84. doi:10.1016/j.physb.2013.06.036, http://www.sciencedirect.com/science/article/pii/S0921452613004092
  30. Munoz F, Varas A, Rogan J, Valdivia JA, Kiwi M (2015) Au13-nAgn clusters: a remarkably simple trend. Phys. Chem. Chem. Phys. 17(45):30492–30498. doi: 10.1039/c5cp05664k, http://pubs.rsc.org/en/content/articlehtml/2015/cp/c5cp05664k
  31. Muñoz M, Varas A, Cárdenas C, Rogan J, Fuentealba P (2013b) Performance of modified Lennard-Jones potential to seed ab initio calculations of small cadmium clusters. Comput Theor Chem 1021:249–255.  doi:10.1016/j.comptc.2013.07.041, http://www.sciencedirect.com/science/article/pii/S2210271X13003289, clusters: From Dimers to Nanoparticles
  32. Niemeyer M, Hirsch K, Zamudio-Bayer V, Langenberg A, Vogel M, Kossick M, Ebrecht C, Egashira K, Terasaki A, Möller T, Issendorff BV, Lau JT (2012) Spin Coupling and Orbital Angular Momentum Quenching in Free Iron Clusters. Phys Rev Lett 108(5):057,201. doi: 10.1103/PhysRevLett.108.057201, http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.108.057201
  33. Perdew JP, Burke K, Ernzerhof M (1996) Generalized Gradient Approximation Made Simple. Phys Rev Lett 77:3865–3868. doi: 10.1103/PhysRevLett.77.3865, http://link.aps.org/doi/10.1103/PhysRevLett.77.3865
  34. Petzow G, Effenberg G (eds) (1989) Ternary alloys: A comprehensive compendium of evaluated constitutional data and phase diagrams. VCH Verlagsgesellschaft, WeinheimGoogle Scholar
  35. Polak M, Rubinovich L (2005) Prediction of intercluster separation and Schottky-type heat-capacity contribution in surface-segregated binary and ternary alloy nanocluster systems. Phys Rev B 71:125,426. doi: 10.1103/PhysRevB.71.125426, http://link.aps.org/doi/10.1103/PhysRevB.71.125426
  36. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical Recipes in Fortran, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  37. Rodríguez-López J, Aguilera-Granja F, Michaelian K, Vega A (2003) Structure and magnetism of cobalt clusters. Phys Rev B 67(17):1–9. doi: 10.1103/PhysRevB.67.174413, http://link.aps.org/doi/10.1103/PhysRevB.67.174413
  38. Rogan J, García G, Loyola C, Orellana W, Ramírez R, Kiwi M (2006) Alternative search strategy for minimal energy nanocluster structures: the case of rhodium, palladium and silver. J Chem Phys 125(214):708. doi: 10.1063/1.2402168 Google Scholar
  39. Rogan J, Ramírez M, Varas A, Kiwi M (2013a) How relevant is the choice of classical potentials in finding minimal energy cluster conformations? Comput Theor Chem 1021:155–163, http://dx.doi.org/10.1016/j.comptc.2013.07.004, http://www.sciencedirect.com/science/article/pii/S2210271X13002843, clusters: From Dimers to Nanoparticles
  40. Rogan J, Varas A, Valdivia JA, Kiwi M (2013b) A strategy to find minimal energy nanocluster structures. J Comput Chem 34(29):2548–2556. doi: 10.1002/jcc.23419, http://dx.doi.org/10.1002/jcc.23419
  41. Rollmann G, Entel P, Sahoo S (2006) Competing structural and magnetic effects in small iron clusters. Comput Mater Sci 35(3):275–278. doi: 10.1016/j.commatsci.2004.09.059, http://www.sciencedirect.com/science/article/pii/S0927025605001369
  42. Rubinovich L, Polak M (2004) Site-specific segregation and compositional ordering in Ni-based ternary alloy nanoclusters computed by the free-energy concentration expansion method. Phys Rev B 69:155,405. doi: 10.1103/PhysRevB.69.155405, http://link.aps.org/doi/10.1103/PhysRevB.69.155405
  43. Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter 14(11):2745. http://stacks.iop.org/0953-8984/14/i=11/a=302
  44. Sourmail T (2005) Near equiatomic FeCo alloys: constitution, mechanical and magnetic properties. Prog Mater Sci 50(7):816–880. doi: 10.1016/j.pmatsci.2005.04.001, http://www.sciencedirect.com/science/article/pii/S0079642505000204
  45. Sun S, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices. Science 287:1989. doi: 10.1126/science.287.5460.1989, http://science.sciencemag.org/content/287/5460/1989 CrossRefGoogle Scholar
  46. Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43:1993–2006. doi: 10.1103/PhysRevB.43.1993, http://link.aps.org/doi/10.1103/PhysRevB.43.1993
  47. Ur Rehman H, Springborg M, Dong Y (2011) Structural and Electronic Properties of Sin, Gen, and SinGen clusters. J Phys Chem A 115(10):2005–2015. doi: 10.1021/jp109198r, http://dx.doi.org/10.1021/jp109198r
  48. Varas A, Aguilera-Granja F, Rogan J, Kiwi M (2015) Structural, electronic, and magnetic properties of FexCoyNiz (x + y + z = 13) clusters: A density-functional-theory study. J Magn Magn Mater 394:325–334. doi: 10.1016/j.jmmm.2015.06.088, http://www.sciencedirect.com/science/article/pii/S0304885315303048
  49. Wakeham N, Rosa PFS, Wang YQ, Kang M, Fisk Z, Ronning F, Thompson JD (2016) Low-temperature conducting state in two candidate topological Kondo insulators: SmB6 and Ce3Bi4Pt3. Phys Rev B 94:035,127. doi: 10.1103/PhysRevB.94.035127, http://link.aps.org/doi/10.1103/PhysRevB.94.035127
  50. Yuan HK, Chen H, Kuang AL, Tian CL, Wang JZ (2013) The spin and orbital moment of Fen (n = 2–20) clusters. J Chem Phys 139(3):034,314. doi: 10.1063/1.4813611, http://scitation.aip.org/content/aip/journal/jcp/139/3/10.1063/1.4813611

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Departamento de Física, Facultad de CienciasUniversidad de ChileSantiagoChile
  2. 2.Nano-Bio Spectroscopy Group and ETSF Scientific Development Centre, Departamento de Física de MaterialesUniversidad del País Vasco UPV/EHUSan SebastiánSpain
  3. 3.Instituto de FísicaUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico
  4. 4.DIPC Donostia International Physics CenterSan SebastiánSpain
  5. 5.Centro para el Desarrollo de la Nanociencia y la Nanotecnología (CEDENNA)SantiagoChile

Personalised recommendations