Advertisement

Phosphonic acids aid composition adjustment in the synthesis of Cu2+x Zn1−x SnSe4−y nanoparticles

  • Maria Ibáñez
  • Taisiia Berestok
  • Oleksandr Dobrozhan
  • Aaron LaLonde
  • Victor Izquierdo-Roca
  • Alexey Shavel
  • Alejandro Pérez-Rodríguez
  • G. Jeffrey Snyder
  • Andreu Cabot
Research Paper

Abstract

The functional properties of quaternary I2–II–IV–VI4 nanomaterials, with potential interest in various technological fields, are highly sensitive to compositional variations, which is a challenging parameter to adjust. Here we demonstrate the presence of phosphonic acids to aid controlling the reactivity of the II element monomer to be incorporated in quaternary Cu2ZnSnSe4 nanoparticles and thus to provide a more reliable way to adjust the final nanoparticle metal ratios. Furthermore, we demonstrate the composition control in such multivalence nanoparticles to allow modifying charge carrier concentrations in nanomaterials produced from the assembly of these building blocks.

Keywords

CZTSe Nanostructured materials Colloidal synthesis Composition control Electrical transport Thermoelectric 

Notes

Acknowledgments

At IREC, work was supported by European Regional Development Funds and the Framework 7 program under project UNION (FP7-NMP 310250). M.I. Thanks AGAUR for her Beatriu i Pinós post-doctoral Grant.

References

  1. Aldakov D, Lefrancois A, Reiss P (2013) Ternary and quaternary metal chalcogenide nanocrystals: synthesis properties and applications. J Mater Chem C 1:3756–3776CrossRefGoogle Scholar
  2. Berger LI, Prochukhan VD (1969) Ternary diamond-like semiconductors. Consultants Bureau, New YorkGoogle Scholar
  3. Cao G, Lynch VM, Yacullo LN (1993) Synthesis, structural characterization, and intercalation chemistry of two layered cadmium organophosphonates. Chem Mater 5:1000–1006. doi: 10.1021/cm00031a021 CrossRefGoogle Scholar
  4. Carrete A et al (2013) Antimony-based ligand exchange to promote crystallization in spray-deposited Cu2ZnSnSe4 solar cells. J Am Chem Soc 135:15982–15985. doi: 10.1021/ja4068639 CrossRefGoogle Scholar
  5. Chen S, Gong XG, Walsh A, Wei S-H (2010) Defect physics of the kesterite thin-film solar cell absorber Cu2ZnSnS4. App Phys Lett 96:02. doi: 10.1063/1.3275796 Google Scholar
  6. Dudchak IV, Piskach LV (2003) Phase equilibria in the Cu2SnSe3–SnSe2–ZnSe system. J Alloys Compd 351:145–150. doi: 10.1016/S0925-8388 CrossRefGoogle Scholar
  7. Fan F-J, Wang Y-X, Liu X-J, Wu L, Yu S-H (2012) Large-scale colloidal synthesis of Non-stoichiometric Cu2ZnSnSe4 nanocrystals for thermoelectric applications. Adv Mater 24:6158–6163. doi: 10.1002/adma.201202860 CrossRefGoogle Scholar
  8. Fella CM, Romanyuk YE, Tiwari AN (2013) Technological status of Cu2ZnSn(S, Se)4 thin film solar cells. Sol Energy Mater Sol Cells 119:276–277. doi: 10.1016/j.solmat.2013.08.027 CrossRefGoogle Scholar
  9. Fredoueil F, Evain M, Massiot D, Bujoli-Doeuff M, Janvier P, Clearfield A, Bujoli B (2002) Synthesis and characterization of two new cadmium phosphonocarboxylates Cd2(OH)(O3PC2H4CO2) and Cd3(O3PC2H4CO2)22H2O. J Chem Soc Dalton Trans 7:1508–1512. doi: 10.1039/B110275N CrossRefGoogle Scholar
  10. García-Rodríguez R, Hendricks MP, Cossairt BM, Liu H, Owen JS (2013) Conversion reactions of cadmium chalcogenide nanocrystal precursors. Chem Mater 25:1233–1249. doi: 10.1021/cm3035642 CrossRefGoogle Scholar
  11. Guo Q, Hillhouse HW, Agrawal R (2009) Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells. J Am Chem Soc 131:11672–11673CrossRefGoogle Scholar
  12. Haas W, Rath T, Pein A, Rattenberger J, Trimmel G, Hofer F (2011) The stoichiometry of single nanoparticles of copper zinc tin selenide. Chem Commun 47:2050–2052CrossRefGoogle Scholar
  13. Heinrich CP, Day TW, Zeier WG, Snyder GJ, Tremel W (2013) Effect of isovalent substitution on the thermoelectric properties of the Cu2ZnGeSe4–xSx series of solid solutions. J Am Chem Soc 136:442–448. doi: 10.1021/ja410753k CrossRefGoogle Scholar
  14. Ibáñez M et al (2012a) Composition control and thermoelectric properties of quaternary chalcogenide nanocrystals: the case of stannite Cu2CdSnSe4. Chem Mater 24:562–570CrossRefGoogle Scholar
  15. Ibáñez M et al (2012b) Cu2ZnGeSe4 nanocrystals: synthesis and thermoelectric properties. J Am Chem Soc 134:4060–4063CrossRefGoogle Scholar
  16. Ibáñez M, Zamani R, Li W, Shavel A, Arbiol J, Morante JR, Cabot A (2012c) Extending the nanocrystal synthesis control to quaternary compositions. Cryst Growth Des 12:1085–1090CrossRefGoogle Scholar
  17. Ibáñez M et al (2013) Colloidal synthesis and thermoelectric properties of Cu2SnSe3 nanocrystals. J Mater Chem A 1:1421CrossRefGoogle Scholar
  18. Ikeda S, Nakamura T, Harada T, Matsumura M (2010) Multicomponent sulfides as narrow gap hydrogen evolution photocatalysts. Phys Chem Chem Phys 12:13943–13949. doi: 10.1039/c0cp00267d CrossRefGoogle Scholar
  19. Ji X, Copenhaver D, Sichmeller C, Peng X (2008) Ligand bonding and dynamics on colloidal nanocrystals at room temperature: the case of alkylamines on CdSe nanocrystals. J Am Chem Soc 130:5726–5735. doi: 10.1021/ja710909f CrossRefGoogle Scholar
  20. Khare A, Wills AW, Ammerman LM, Norris DJ, Aydil ES (2011) Size control and quantum confinement in Cu2ZnSnS4 nanocrystals. Chem Commun 47:11721–11723CrossRefGoogle Scholar
  21. LaLonde AD, Ikeda T, Snyder GJ (2011) Rapid consolidation of powdered materials by induction hot pressing. Rev Sci Instrum 82:025104. doi: 10.1063/1.3534080 CrossRefGoogle Scholar
  22. Li W et al (2013) Cu2HgSnSe4 nanoparticles: synthesis and thermoelectric properties. Cryst Eng Comm 15:8966–8971. doi: 10.1039/c3ce41583j CrossRefGoogle Scholar
  23. Li W et al (2014) Colloidal synthesis and functional properties of quaternary Cu-Based semiconductors: Cu2HgGeSe4. J Nanopart Res 16:1–6. doi: 10.1007/s11051-014-2297-2 Google Scholar
  24. Liu H, Owen JS, Alivisatos AP (2007) Mechanistic study of precursor evolution in colloidal Group II–VI semiconductor nanocrystal synthesis. J Am Chem Soc 129:305–312. doi: 10.1021/ja0656696 CrossRefGoogle Scholar
  25. Liu M-L, Chen IW, Huang F-Q, Chen L-D (2009a) Improved thermoelectric properties of Cu-doped quaternary chalcogenides of Cu2CdSnSe4. Adv Mater 21:3808–3812CrossRefGoogle Scholar
  26. Liu M-L, Huang F-Q, Chen L-D, Chen I-W (2009b) A wide-band-gap p-type thermoelectric material based on quaternary chalcogenides of Cu2ZnSnQ4 (Q=S, Se). Appl Phys Lett 94:202103CrossRefGoogle Scholar
  27. Mitzi DB, Gunawan O, Todorov TK, Wang K, Guha S (2011) The path towards a high-performance solution-processed kesterite solar cell. Sol Energ Mat Sol C 95:1421–1436CrossRefGoogle Scholar
  28. Miyauchi M, Hanayama T, Atarashi D, Sakai E (2012) Photoenergy conversion in p-Type Cu2ZnSnS4 nanorods and n-Type metal oxide composites. J Phys Chem C 116:23945–23950. doi: 10.1021/jp307949n CrossRefGoogle Scholar
  29. Nakamura S, Maeda T, Wada T (2010) Phase stability and electronic structure of In-free photovoltaic materials: Cu2ZnSiSe4, Cu2ZnGeSe4, and Cu2ZnSnSe4. Jpn J Appl Phys 49:121203CrossRefGoogle Scholar
  30. Peng ZA, Peng X (2002) Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth. J Am Chem Soc 124:3343–3353. doi: 10.1021/ja0173167 CrossRefGoogle Scholar
  31. Pradhan N, Reifsnyder D, Xie R, Aldana J, Peng X (2007) Surface ligand dynamics in growth of nanocrystals. J Am Soc Chem 129:9500–9509. doi: 10.1021/ja0725089 CrossRefGoogle Scholar
  32. Riha SC, Parkinson BA, Prieto AL (2009) Solution-based synthesis and characterization of Cu2ZnSnS4 nanocrystals. J Am Chem Soc 131:12054–12055CrossRefGoogle Scholar
  33. Riha SC, Parkinson BA, Prieto AL (2011) Compositionally tunable Cu2ZnSn(S(1−x)Se(x))4 Nanocrystals: probing the effect of Se-inclusion in mixed chalcogenide thin films. J Am Chem Soc 133:15272–15275CrossRefGoogle Scholar
  34. Sevik C, Cagin T (2009) Assessment of thermoelectric performance of Cu2ZnSnX4, X=S, Se, and Te. Appl Phys Lett 95:112105CrossRefGoogle Scholar
  35. Shavel A, Arbiol J, Cabot A (2010) Synthesis of quaternary chalcogenide nanocrystals: stannite Cu2ZnxSnySe1+x+2y. J Am Chem Soc 132:4514–4515CrossRefGoogle Scholar
  36. Singh A, Geaney H, Laffir F, Ryan KM (2012) Colloidal synthesis of wurtzite Cu2ZnSnS4 nanorods and their perpendicular assembly. J Am Chem Soc 134:2910–2913CrossRefGoogle Scholar
  37. Singh A, Singh S, Levcenko S, Unold T, Laffir F, Ryan KM (2013) Compositionally tunable photoluminescence emission in Cu2ZnSn(S1−xSex)4 nanocrystals. Angew Chem Int Ed 52:9120–9124. doi: 10.1002/anie.201302867 CrossRefGoogle Scholar
  38. Tanaka K, Fukui Y, Moritake N, Uchiki H (2011) Chemical composition dependence of morphological and optical properties of Cu2ZnSnS4 thin films deposited by sol–gel sulfurization and Cu2ZnSnS4 thin film solar cell efficiency. Sol Energ Mat Sol C 95:838–842CrossRefGoogle Scholar
  39. Todorov TK, Tang J, Bag S, Gunawan O, Gokmen T, Zhu Y, Mitzi DB (2012) Beyond 11 % efficiency: characteristics of state-of-the-art Cu2ZnSn(S, Se)4. Solar Cells Adv Energy Mater 3(1):34–38. doi: 10.1002/aenm.201200348 CrossRefGoogle Scholar
  40. Tsuyoshi M, Satoshi N, Takahiro W (2011) First principles calculations of defect formation in In-free photovoltaic semiconductors Cu 2 ZnSnS 4 and Cu 2 ZnSnSe4. Jpn J Appl Phys 50(4S):04DP07CrossRefGoogle Scholar
  41. Wang W, Banerjee S, Jia S, Steigerwald ML, Herman IP (2007) Ligand control of growth morphology and capping structure of colloidal CdSe nanorods. Chem Mater 19:2573–2580. doi: 10.1021/cm0705791 CrossRefGoogle Scholar
  42. Xiao W et al (2015) Intrinsic defects and Na doping in Cu2ZnSnS4: a density-functional theory study. Sol Energy 116:125–132. doi: 10.1016/j.solener.2015.04.005 CrossRefGoogle Scholar
  43. Yu X, Shavel A, An X, Luo Z, Ibáñez M, Cabot A (2014) Cu2ZnSnS4–Pt and Cu2ZnSnS4–Au heterostructured nanoparticles for photocatalytic water splitting and pollutant degradation. J Am Chem Soc 136:9236–9239. doi: 10.1021/ja502076b CrossRefGoogle Scholar
  44. Yu X, An X, Genç A, Ibáñez M, Arbiol J, Zhang Y, Cabot A (2015a) Cu2ZnSnS4–PtM (M=Co, Ni) nanoheterostructures for photocatalytic hydrogen evolution. J Phys Chem C 119:21882–21888. doi: 10.1021/acs.jpcc.5b06199 CrossRefGoogle Scholar
  45. Yu X et al (2015b) Cu2ZnSnS4–Ag2S nanoscale p–n Heterostructures as sensitizers for photoelectrochemical water splitting. Langmuir 31:10555–10561. doi: 10.1021/acs.langmuir.5b02490 CrossRefGoogle Scholar
  46. Zeier WG, LaLonde A, Gibbs ZM, Heinrich CP, Panthöfer M, Snyder GJ, Tremel W (2012) Influence of a nano phase segregation on the thermoelectric properties of the p-Type doped stannite compound Cu2+xZn1−xGeSe4. J Am Chem Soc 134:7147–7154. doi: 10.1021/ja301452j CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Maria Ibáñez
    • 1
  • Taisiia Berestok
    • 1
  • Oleksandr Dobrozhan
    • 1
  • Aaron LaLonde
    • 2
  • Victor Izquierdo-Roca
    • 1
  • Alexey Shavel
    • 1
  • Alejandro Pérez-Rodríguez
    • 1
    • 3
  • G. Jeffrey Snyder
    • 2
    • 4
  • Andreu Cabot
    • 1
    • 5
  1. 1.Catalonia Institute for Energy Research (IREC)BarcelonaSpain
  2. 2.Materials ScienceCalifornia Institute of TechnologyPasadenaUSA
  3. 3.Departament d’Electrònica, IN2UBUniversitat de BarcelonaBarcelonaSpain
  4. 4.Materials Science and EngineeringNorthwestern UniversityEvanstonUSA
  5. 5.Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain

Personalised recommendations