Effect of silica/titania ratio on enhanced photooxidation of industrial hazardous materials by microwave treated mesoporous SBA-15/TiO2 nanocomposites

  • Akansha Mehta
  • Amit Mishra
  • Manisha Sharma
  • Satnam Singh
  • Soumen Basu
Research Paper

Abstract

In this study microwave assisted technique has been adopted for the synthesis of different weight ratios of TiO2 dispersed on Santa barbara amorphous-15 (SBA-15) support. Morphological study revealed TiO2 particles (4–10 nm) uniformly distributed on SBA-15 while increases in SBA-15 content results in higher specific surface area (524–237 m2/g). The diffraction intensity of 101 plane of anatase polymorph was seen increasing with increase in TiO2 ratio. All the photocatalysts were having a mesoporous nature and follow the Langmuir IV isotherm, SBA-15 posses the highest pore volume (0.93 cm3 g−1) which consistently decreased with TiO2 content and was lowest (0.50 cm3 g−1) in case of 5 wt% of TiO2 followed by P25 (0.45 cm3 g−1) while pore diameter increased after TiO2 incorporation due to pore strain. The photocatalytic activity of the nanocomposites were analysed for the photodegradation of alizarin dye and pentachlorophenol under UV light irradiation. The reaction kinetics suggested the highest efficiency (98 % for alizarin and 94 % for PCP) of 5 wt% TiO2 compared to other photocatalysts, these nanocomposites were reused for several cycles, which is most important for heterogeneous photocatalytic degradation reaction.

Graphical abstract

This study demonstrates the synthesis of silica embedded TiO2 nanocomposites by microwave assisted technique and their catalytic influence on degradation of organic dyes and pollutants. Higher loading of titania (SBA-15/TiO2, 1:5) results better catalytic performance than commercial nano TiO2 (P25).

Keywords

Microwave assisted synthesis Mesoporous material SBA-15/TiO2 Alizarin dye Pentachlorophenol Photocatalytic degradation 

Supplementary material

11051_2016_3523_MOESM1_ESM.docx (679 kb)
Supplementary material 1 (DOCX 678 kb)

References

  1. Bilgi S, Demir C (2005) Identification of photooxidation degradation products of CI Reactive Orange 16 dye by gas chromatography–mass spectrometry. Dyes Pigm 66(1):69CrossRefGoogle Scholar
  2. Chang F, Wang G, Xie Y, Zhang M, Zhang J, Yang HJ, Hu X (2013a) Synthesis of TiO2 nanoparticles on mesoporous aluminosilicate Al-SBA-15 in supercritical CO2 for photocatalytic decolorization of methylene blue. Ceram Int 39(4):3823CrossRefGoogle Scholar
  3. Chang F, Wang G, Xie Y, Zhang M, Zhang J, Yang HJ, Hu X (2013b) Synthesis of TiO2 nanoparticles on mesoporous aluminosilicate Al-SBA-15 in supercritical CO2 for photocatalytic decolorization of methylene blue. Ceram Int 39(4):3823CrossRefGoogle Scholar
  4. Chen X, Ma W, Li J, Wang Z, Chen C, Ji H, Zhao J (2011) Photocatalytic oxidation of organic pollutants catalyzed by an iron complex at biocompatible pH values: using O2 as main oxidant in a Fenton-like reaction. J Phys Chem C 115(10):4089CrossRefGoogle Scholar
  5. Dai P, Zhang L, Zhang G, Li G, Sun Z, Liu X, Wu M (2014) Characterization and photocatalytic activity of (ZnO–CuO)/SBA-15 nanocomposites synthesized by two-solvent method. Mater Res Bull 56:119CrossRefGoogle Scholar
  6. Elghniji K, Hentati O, Mlaik N, Mahfoudh A, Ksibi M (2012) Photocatalytic degradation of 4-chlorophenol under P-modified TiO 2/UV system: kinetics, intermediates, phytotoxicity and acute toxicity. J Environ Sci 24(3):479CrossRefGoogle Scholar
  7. Ho TF, Bolton JR (1998) Toxicity changes during the UV treatment of pentachlorophenol in dilute aqueous solution. Water Res 32(2):489CrossRefGoogle Scholar
  8. Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review Appl Catal B Environ 49(1):1Google Scholar
  9. Lachheb H, Puzenat E, Houas A, Ksibi M, Elaloui E, Guillard C, Herrmann JM (2002) Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Appl Catal B: Environ 39(1):75CrossRefGoogle Scholar
  10. Li J, Qi T, Wang L, Liu C, Zhang Y (2007) Synthesis and characterization of imidazole-functionalized SBA-15 as an adsorbent of hexavalent chromium. Mater Lett 61(14):3197CrossRefGoogle Scholar
  11. Li GS, Zhang DQ, Yu JC (2009) A new visible-light photocatalyst: CdS quantum dots embedded mesoporous TiO2. Environ Sci Technol 43(18):7079CrossRefGoogle Scholar
  12. Li W, Wu Z, Wang J, Elzatahry AA, Zhao D (2013) A perspective on mesoporous TiO2 materials. Chem Mater 26(1):287CrossRefGoogle Scholar
  13. Lunawat PS, Kumar R, Gupta NM (2008) Structure sensitivity of nano-structured CdS/SBA-15 containing Au and Pt co-catalysts for the photocatalytic splitting of water. Catal Lett 121(3–4):226CrossRefGoogle Scholar
  14. Pandarus V, Ciriminna R, Béland F, Pagliaro M (2011) A new class of heterogeneous platinum catalysts for the chemoselective hydrogenation of nitroarenes. Adv Synth Catal 353(8):1306CrossRefGoogle Scholar
  15. Pang YL, Abdullah AZ (2012) Comparative study on the process behavior and reaction kinetics in sonocatalytic degradation of organic dyes by powder and nanotubes TiO2. Ultrason Sonochem 19(3):642CrossRefGoogle Scholar
  16. Quan X, Ruan X, Zhao H, Chen S, Zhao Y (2007) Photoelectrocatalytic degradation of pentachlorophenol in aqueous solution using a TiO2 nanotube film electrode. Environ Pollut 147(2):409CrossRefGoogle Scholar
  17. Sawant DP, Justus J, Balasubramanian VV, Ariga K, Srinivasu P, Velmathi S, Halligudi SB, Vinu A (2008) Heteropoly acid encapsulated SBA-15/TiO2 nanocomposites and their unusual performance in acid-catalysed organic transformations. Chem Eur J 14(10):3200CrossRefGoogle Scholar
  18. Srinivasan NR, Majumdar P, Eswar NK, Bandyopadhyaya R (2015) Photocatalysis by morphologically tailored mesoporous silica (SBA-15) embedded with SnO2 nanoparticles: Experiments and model. Appl Catal A General 498:107CrossRefGoogle Scholar
  19. Tiwari D, Lalhriatpuia C, Lee SM, Kong SH (2015) Efficient application of nano-TiO2 thin films in the photocatalytic removal of Alizarin Yellow from aqueous solutions. Appl Surf Sci 353:275CrossRefGoogle Scholar
  20. Tuomela M, Lyytikäinen M, Oivanen P, Hatakka A (1998) Mineralization and conversion of pentachlorophenol (PCP) in soil inoculated with the white-rot fungus Trametes versicolor. Soil Biol Biochem 31(1):65CrossRefGoogle Scholar
  21. Watanabe T, Nakajima A, Wang R, Minabe M, Koizumi S, Fujishima A, Hashimoto K (1999) Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass. Thin Solid Films 351(1):260CrossRefGoogle Scholar
  22. Wu ZY, Tao YF, Lin Z, Liu L, Fan XX, Wang Y (2009) Hydrothermal synthesis and morphological evolution of mesoporous titania–silica. J Phys Chem C 113(47):20335CrossRefGoogle Scholar
  23. Xia F, Ou E, Wang L, Wang J (2008) Photocatalytic degradation of dyes over cobalt doped mesoporous SBA-15 under sunlight. Dyes Pigm 76(1):76CrossRefGoogle Scholar
  24. Yang HC, Lin HY, Chien YS, Wu JC, Wu HH (2009) Mesoporous TiO2/SBA-15, and Cu/TiO2/SBA-15 composite photocatalysts for photoreduction of CO2 to methanol. Catal Lett 131(3–4):381CrossRefGoogle Scholar
  25. Yang L, Jiang Z, Lai S, Jiang C, Zhong H (2014) Synthesis of titanium containing SBA-15 and its application for photocatalytic degradation of phenol. Int J Chem Eng 2014:1Google Scholar
  26. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50–300 angstrom pores. Science 279(5350):548CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Akansha Mehta
    • 1
  • Amit Mishra
    • 1
  • Manisha Sharma
    • 1
  • Satnam Singh
    • 1
  • Soumen Basu
    • 1
  1. 1.School of Chemistry and BiochemistryThapar UniversityPatialaIndia

Personalised recommendations