Advertisement

Near-infrared fluorescent aza-BODIPY dye-loaded biodegradable polymeric nanoparticles for optical cancer imaging

  • Casey L. Hamon
  • Christopher L. Dorsey
  • Tuğba Özel
  • Eugenia M. Barnes
  • Todd W. Hudnall
  • Tania Betancourt
Research Paper

Abstract

Nanoparticles are being readily investigated as carriers for the delivery of imaging and therapeutic agents for the detection, monitoring, and treatment of cancer and other diseases. In the present work, the preparation of biodegradable polymeric nanoparticles loaded with a near-infrared fluorescent aza-boron dipyrromethene (NIR-BODIPY) derivative, and their use as contrast agents for optical imaging in cancer are described. Nanoparticles were prepared by nanoprecipitation of amphiphilic block copolymers of poly(lactic acid) and poly(ethylene glycol). The size, morphology, dye loading, spectral properties, quantum yield, cytocompatibility, and in vitro NIR imaging potential of the nanoparticles in breast and ovarian cancer cells were evaluated. Spherical nanoparticles of 30–70 nm in diameter were loaded with 0.73 w/w% BODIPY derivative. At this loading, the dye presented a fluorescence quantum yield in the same order of magnitude as in solution. Nanoparticle suspensions at concentrations up to 580 μg/mL were cytocompatible to breast (MDA-MB-231) and ovarian (SKOV-3 and Caov-3) cancer cells after a four-hour incubation period. Fluorescence microscopy images demonstrated the ability of the nanoparticles to act as imaging agents in all three cell lines in as little as 1 hour. The results shown indicate the potential of these NIR-BODIPY-loaded nanoparticles as contrast agents for near-infrared optical imaging in cancer.

Graphical abstract

Keywords

Nanomedicine Near-infrared fluorescence Optical imaging Block copolymers Biodegradable polymers Quantum yield 

Notes

Acknowledgments

This research was supported in part by the Texas Emerging Technology Fund (startup funds for TB), the National Science Foundation Partnership in Research and Education in Materials (PREM, DMR-1205670), and the Robert A. Welch Foundation (AI-0045).

Compliance with ethical standards

Conflict of Interests

The authors declare that they have no conflict of interests regarding publication of this paper.

Supplementary material

11051_2016_3518_MOESM1_ESM.pdf (2 mb)
Supplementary material 1 (PDF 2093 kb)

References

  1. Aydogan F, Ozben V, Aytac E, Yilmaz H, Cercel A, Celik V (2012) Excision of nonpalpable breast cancer with indocyanine green fluorescence-guided occult lesion localization (IFOLL). Breast Care (Basel) 7:48–51. doi: 10.1159/000336497 CrossRefGoogle Scholar
  2. Bao L et al (2011) Electrochemical tuning of luminescent carbon nanodots: from preparation to luminescence mechanism. Adv Mater 23:5801–5806. doi: 10.1002/adma.201102866 CrossRefGoogle Scholar
  3. Benson RC, Kues HA (1978) Fluorescence properties of indocyanine green as related to angiography. Phys Med Biol 23:159–163CrossRefGoogle Scholar
  4. Betancourt T, Brown B, Brannon-Peppas L (2007) Doxorubicin-loaded PLGA nanoparticles by nanoprecipitation: preparation, characterization and in vitro evaluation. Nanomedicine (London) 2:219–232. doi: 10.2217/17435889.2.2.219 CrossRefGoogle Scholar
  5. Betancourt T et al (2009a) PEGylation strategies for active targeting of PLA/PLGA nanoparticles. J Biomed Mater Res A 91:263–276. doi: 10.1002/jbm.a.32247 CrossRefGoogle Scholar
  6. Betancourt T, Shah K, Brannon-Peppas L (2009b) Rhodamine-loaded poly(lactic-co-glycolic acid) nanoparticles for investigation of in vitro interactions with breast cancer cells. J Mater Sci Mater Med 20:387–395. doi: 10.1007/s10856-008-3594-z CrossRefGoogle Scholar
  7. Byrne JD, Betancourt T, Brannon-Peppas L (2008) Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 60:1615–1626. doi: 10.1016/j.addr.2008.08.005 CrossRefGoogle Scholar
  8. Caldorera-Moore ME, Liechty WB, Peppas NA (2011) Responsive theranostic systems: integration of diagnostic imaging agents and responsive controlled release drug delivery carriers. Acc Chem Res 44:1061–1070. doi: 10.1021/ar2001777 CrossRefGoogle Scholar
  9. Celli JP et al (2010) Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. Chem Rev 110:2795–2838. doi: 10.1021/cr900300p CrossRefGoogle Scholar
  10. Chi C et al (2014) Intraoperative imaging-guided cancer surgery: from current fluorescence molecular imaging methods to future multi-modality imaging technology. Theranostics 4:1072–1084. doi: 10.7150/thno.9899 CrossRefGoogle Scholar
  11. Danhier F, Feron O, Preat V (2010) To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148:135–146. doi: 10.1016/j.jconrel.2010.08.027 CrossRefGoogle Scholar
  12. Doornbos RM, Lang R, Aalders MC, Cross FW, Sterenborg HJ (1999) The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy. Phys Med Biol 44:967–981CrossRefGoogle Scholar
  13. Gresser R, Hummert M, Hartmann H, Leo K, Riede M (2011) Synthesis and characterization of near-infrared absorbing benzannulated aza-BODIPY dyes. Chemistry 17:2939–2947. doi: 10.1002/chem.201002941 CrossRefGoogle Scholar
  14. Hermanson GT (2013) Bioconjugate techniques, 3rd edn. Elsevier Inc., WalthamGoogle Scholar
  15. HORIBA (2012) A guide to recording fluorescence quantum yields. Jobin Yvon Ltd, StanmoreGoogle Scholar
  16. Jiang S, Gnanasammandhan MK, Zhang Y (2010) Optical imaging-guided cancer therapy with fluorescent nanoparticles. J R Soc Interface 7:3–18. doi: 10.1098/rsif.2009.0243 CrossRefGoogle Scholar
  17. Khullar O, Frangioni JV, Grinstaff M, Colson YL (2009) Image-guided sentinel lymph node mapping and nanotechnology-based nodal treatment in lung cancer using invisible near-infrared fluorescent light. Semin Thorac Cardiovasc Surg 21:309–315. doi: 10.1053/j.semtcvs.2009.11.009 CrossRefGoogle Scholar
  18. Liu Y, Liu C-Y, Zhang Z-Y (2013) Graphitized carbon dots emitting strong green photoluminescence. J Mater Chem C 1:4902–4907CrossRefGoogle Scholar
  19. Loudet A, Burgess K (2007) BODIPY dyes and their derivatives: syntheses and spectroscopic properties. Chem Rev 107:4891–4932. doi: 10.1021/cr078381n CrossRefGoogle Scholar
  20. Mahmood U, Weissleder R (2003) Near-infrared optical imaging of proteases in cancer. Mol Cancer Ther 2:489–496Google Scholar
  21. Marshall MV et al (1010) Near-infrared fluorescence imaging in humans with indocyanine green: a review and update. Open Surg Oncol J 2:12–25CrossRefGoogle Scholar
  22. Mito JK et al (2012) Intraoperative detection and removal of microscopic residual sarcoma using wide-field imaging. Cancer 118:5320–5330. doi: 10.1002/cncr.27458 CrossRefGoogle Scholar
  23. Nagaich U (2014) Nanomedicine: revolutionary trends in drug delivery and diagnostics. J Adv Pharm Technol Res 5:1. doi: 10.4103/2231-4040.126977 CrossRefGoogle Scholar
  24. Narang AS, Varia S (2011) Role of tumor vascular architecture in drug delivery. Adv Drug Deliv Rev 63:640–658. doi: 10.1016/j.addr.2011.04.002 CrossRefGoogle Scholar
  25. Ntziachristos V, Ripoll J, Weissleder R (2002) Would near-infrared fluorescence signals propagate through large human organs for clinical studies? Opt Lett 27:333–335CrossRefGoogle Scholar
  26. Ntziachristos V, Bremer C, Weissleder R (2003) Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur Radiol 13:195–208. doi: 10.1007/s00330-002-1524-x Google Scholar
  27. Ozel T, White S, Nguyen E, Moy A, Brenes N, Choi B, Betancourt T (2015) Enzymatically activated near infrared nanoprobes based on amphiphilic block copolymers for optical detection of cancer. Lasers Surg Med 47:579–594. doi: 10.1002/lsm.22396 CrossRefGoogle Scholar
  28. Parveen S, Misra R, Sahoo SK (2012) Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine 8:147–166. doi: 10.1016/j.nano.2011.05.016 Google Scholar
  29. Qu L, Peng X (2002) Control of photoluminescence properties of CdSe nanocrystals in growth. J Am Chem Soc 124:2049–2055CrossRefGoogle Scholar
  30. Sakamoto JH et al (2010) Enabling individualized therapy through nanotechnology. Pharmacol Res 62:57–89. doi: 10.1016/j.phrs.2009.12.011 CrossRefGoogle Scholar
  31. Sampath L, Kwon S, Hall MA, Price RE, Sevick-Muraca EM (2010) Detection of cancer metastases with a dual-labeled near-infrared/positron emission tomography imaging agent. Transl Oncol 3:307CrossRefGoogle Scholar
  32. Saxena V, Sadoqi M, Shao J (2003) Degradation kinetics of indocyanine green in aqueous solution. J Pharm Sci 92:2090–2097. doi: 10.1002/jps.10470 CrossRefGoogle Scholar
  33. Saxena V, Sadoqi M, Shao J (2006) Polymeric nanoparticulate delivery system for Indocyanine green: biodistribution in healthy mice. Int J Pharm 308:200–204. doi: 10.1016/j.ijpharm.2005.11.003 CrossRefGoogle Scholar
  34. Ventola CL (2012) The nanomedicine revolution: part 2: current and future clinical applications. P T 37:582–591Google Scholar
  35. Villaraza AJ, Milenic DE, Brechbiel MW (2010) Improved speciation characteristics of PEGylated indocyanine green-labeled Panitumumab: revisiting the solution and spectroscopic properties of a near-infrared emitting anti-HER1 antibody for optical imaging of cancer. Bioconjug Chem 21:2305–2312. doi: 10.1021/bc100336b CrossRefGoogle Scholar
  36. Wang ZY (2013) Near-infrared organic materials and emerging applications. CRC Press, Boca Raton, FLCrossRefGoogle Scholar
  37. Yoshida M et al (2012) Indocyanine green injection for detecting sentinel nodes using color fluorescence camera in the laparoscopy-assisted gastrectomy. J Gastroenterol Hepatol 27(Suppl 3):29–33. doi: 10.1111/j.1440-1746.2012.07067.x CrossRefGoogle Scholar
  38. Yu MK, Park J, Jon S (2012) Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics 2:3–44. doi: 10.7150/thno.3463 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Casey L. Hamon
    • 1
  • Christopher L. Dorsey
    • 1
  • Tuğba Özel
    • 2
  • Eugenia M. Barnes
    • 1
  • Todd W. Hudnall
    • 1
    • 2
  • Tania Betancourt
    • 1
    • 2
  1. 1.Department of Chemistry and BiochemistryTexas State UniversitySan MarcosUSA
  2. 2.Materials Science, Engineering, and Commercialization ProgramTexas State UniversitySan MarcosUSA

Personalised recommendations