Evaluation of humidity sensing properties of TMBHPET thin film embedded with spinel cobalt ferrite nanoparticles

  • Qayyum ZafarEmail author
  • Mohamad Izzat Azmer
  • Abdullah G. Al-Sehemi
  • Mohammad S. Al-Assiri
  • Abul Kalam
  • Khaulah Sulaiman
Research Paper


In this study, we report the enhanced sensing parameters of previously reported TMBHPET-based humidity sensor. Significant improved sensing performance has been demonstrated by coupling of TMBHPET moisture sensing thin film with cobalt ferrite nanoparticles (synthesized by eco-benign ultrasonic method). The mean size of CoFe2O4 nanoparticles has been estimated to be ~ 6.5 nm. It is assumed that the thin film of organic–ceramic hybrid matrix (TMBHPET:CoFe2O4) is a potential candidate for humidity sensing utility by virtue of its high specific surface area and porous surface morphology (as evident from TEM, FESEM, and AFM images). The hybrid suspension has been drop-cast onto the glass substrate with preliminary deposited coplanar aluminum electrodes separated by 40 µm distance. The influence of humidity on the capacitance of the hybrid humidity sensor (Al/TMBHPET:CoFe2O4/Al) has been investigated at three different frequencies of the AC applied voltage (V rms ~ 1 V): 100 Hz, 1 kHz, and 10 kHz. It has been observed that at 100 Hz, under a humidity of 99 % RH, the capacitance of the sensor increased by 2.61 times, with respect to 30 % RH condition. The proposed sensor exhibits significantly improved sensitivity ~560 fF/ % RH at 100 Hz, which is nearly 7.5 times as high as that of pristine TMBHPET-based humidity sensor. Further, the capacitive sensor exhibits improved dynamic range (30–99 % RH), small hysteresis (~2.3 %), and relatively quicker response and recovery times (~12 s, 14 s, respectively). It is assumed that the humidity response of the sensor is associated with the diffusion kinetics of water vapors and doping of the semiconductor nanocomposite by water molecules.


Organic semiconductor Spinel ferrite nanoparticles Organic–ceramic hybrid nanocomposite Specific surface area, porous surface morphology Humidity adsorption Capacitive sensor 



The authors (Q. Z, M. I. A., and K. S.) are thankful to the Ministry of Education for the financial support under High Impact Research (HIR) Grant UM.S/625/3/HIR/MOE/26 with account number UM.0000080/HIR.C3 and University Malaya Research Grant (UMRG) under Grant number RP007A-13AFR. The author (A. G. S.) is thankful to the Promising Centre for Sensors and Electronic Devices (PCSED) at Najran University, Kingdom of Saudi Arabia for support of this research through Grant number PCSED-005-14.


  1. Agarwal S, Sharma G, Manchanda R (2001) Electrical conduction in (Ba, Sr) TiO3 thin film MIS capacitor under humid conditions. Solid State Commun 119:681–686CrossRefGoogle Scholar
  2. Ahmad Z, Sayyad M, Saleem M, Karimov KS, Shah M (2008) Humidity-dependent characteristics of methyl-red thin film-based Ag/methyl-red/Ag surface-type cell. Phys E 41:18–22CrossRefGoogle Scholar
  3. Ahmad Z, Zafar Q, Sulaiman K, Akram R, Karimov KS (2013) A humidity sensing organic-inorganic composite for environmental monitoring. Sensors 13:3615–3624CrossRefGoogle Scholar
  4. Al-Sehemi AG, Irfan A, Asiri AM, Ammar YA (2012a) Molecular design of new hydrazone dyes for dye-sensitized solar cells: synthesis, characterization and DFT study. J Mol Struct 1019:130–134CrossRefGoogle Scholar
  5. Al-Sehemi AG, Irfan A, Asiri AM, Ammar YA (2012b) Synthesis, characterization and DFT study of methoxybenzylidene containing chromophores for DSSC materials. Spectrochim Acta A 91:239–243CrossRefGoogle Scholar
  6. Al-Sehemi AG, Al-Assiri MS, Kalam A, Zafar Q, Azmer MI, Sulaiman K, Ahmad Z (2016) Sensing performance optimization by tuning surface morphology of organic (D-π-A) dye based humidity sensor. Sensor Actuat B 231:30–37CrossRefGoogle Scholar
  7. Arshaka K, Twomey K, Egan D (2002) A ceramic thick film humidity sensor based on MnZn ferrite. Sensors 2:50–61CrossRefGoogle Scholar
  8. Azmer MI, Ahmad Z, Sulaiman K, Al-Sehemi AG (2015) Humidity dependent electrical properties of an organic material DMBHPET. Measurement 61:180–184CrossRefGoogle Scholar
  9. Azmer MI, Ahmad Z, Sulaiman K, Touati F (2016a) Morphological and structural properties of VoPcPhO: P3HT composite thin films. Mater Lett 164:605–608CrossRefGoogle Scholar
  10. Azmer MI, Zafar Q, Ahmad Z, Sulaiman K (2016b) Humidity sensor based on electrospun MEH-PPV: PVP microstructured composite. RSC Adv 6:35387–35393CrossRefGoogle Scholar
  11. Bässler H, Köhler A (2012) Charge transport in organic semiconductors. Unimolecular and Supramolecular Electronics I. Springer, New York, pp 1–65Google Scholar
  12. Björkqvist M, Salonen J, Paski J, Laine E (2004) Characterization of thermally carbonized porous silicon humidity sensor. Sens Actuat A 112:244–247CrossRefGoogle Scholar
  13. Björkqvist M, Paski J, Salonen J, Lehto V-P (2006) Studies on hysteresis reduction in thermally carbonized porous silicon humidity sensor. IEEE Sens J 6:542–547CrossRefGoogle Scholar
  14. Caliendo C, Verona E, D’Amico A, Furlani A, Iucci G, Russo M (1993) Surface acoustic wave humidity sensor. Sens Actuat B 16:288–292CrossRefGoogle Scholar
  15. Calixto S, Andres MV (2015) Water vapor sensors based on the swelling of relief gelatin gratings. Adv Mater Sci Eng 2015:1–5CrossRefGoogle Scholar
  16. Chani MTS, Karimov KS, Khalid FA, Raza K, Farooq MU, Zafar Q (2012) Humidity sensors based on aluminum phthalocyanine chloride thin films. Phys E 45:77–81CrossRefGoogle Scholar
  17. Chani MTS, Karimov KS, Khalid FA, Moiz SA (2013) Polyaniline based impedance humidity sensors. Solid State Sci 18:78–82CrossRefGoogle Scholar
  18. Chen Z, Lu C (2005) Humidity sensors: a review of materials and mechanisms. Sens Lett 3:274–295CrossRefGoogle Scholar
  19. Chow L, Yuen M, Chan P, Cheung A (2001) Reactive sputtered TiO2 thin film humidity sensor with negative substrate bias. Sens Actuat B 76:310–315CrossRefGoogle Scholar
  20. Comini E, Ferroni M, Guidi V, Faglia G, Martinelli G, Sberveglieri G (2002) Nanostructured mixed oxides compounds for gas sensing applications. Sens Actuat B 84:26–32CrossRefGoogle Scholar
  21. Doroftei C, Rezlescu E, Rezlescu N, Popa P (2006) Microstructure and humidity sensitive properties of MgFe ~ 2O–4 ferrite with Sn and Mo substitutions prepared by self-combustion method. J Optoelectron Adv Mater 8:1012Google Scholar
  22. Farahani H, Wagiran R, Hamidon MN (2014) Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review. Sensors 14:7881–7939CrossRefGoogle Scholar
  23. Gadkari A, Shinde T, Vasambekar P (2011) Ferrite gas sensors. IEEE Sens J 11:849–861CrossRefGoogle Scholar
  24. Ghara DK, Saha D, Sengupta K (2008) Implementation of linear trace moisture sensor by nano porous thin film moisture sensor and NLAmp. Int J Smart Sens Intell Syst 1:955–969Google Scholar
  25. Han G, Shi G (2007) Porous polypyrrole/polymethylmethacrylate composite film prepared by vapor deposition polymerization of pyrrole and its application for ammonia detection. Thin Solid Films 515:6986–6991CrossRefGoogle Scholar
  26. Hoffmann F, Cornelius M, Morell J, Fröba M (2006) Silica-based mesoporous organic–inorganic hybrid materials. Angew Chem Int Ed 45:3216–3251CrossRefGoogle Scholar
  27. Joulazadeh M, Navarchian AH, Niroomand M (2014) A comparative study on humidity sensing performances of polyaniline and polypyrrole nanostructures. Adv Polym Tech 33:21461CrossRefGoogle Scholar
  28. Juhász L, Váss-Vamai A, Timár-Horváth V, Desmulliez MP, Dhariwal RS (2008) Porous alumina based capacitive MEMS RH sensor. In: IEEE Symposium on design, test, integration and packaging of MEMS/MOEMS, 2008. MEMS/MOEMS 2008, pp 381–385Google Scholar
  29. Kang B, Jang M, Chung Y, Kim H, Kwak SK, Oh JH, Cho K (2014) Enhancing 2D growth of organic semiconductor thin films with macroporous structures via a small-molecule heterointerface. Nat Commun 5(7):2302–2315Google Scholar
  30. Karimov KS, Cheong KY, Saleem M, Murtaza I, Farooq M, Noor AFM (2010) Ag/PEPC/NiPc/ZnO/Ag thin film capacitive and resistive humidity sensors. J Semicond 31:054002CrossRefGoogle Scholar
  31. Karimov KS, Saleem M, Karieva Z, Mateen A, Chani MTS, Zafar Q (2012) Humidity sensing properties of Cu2O-PEPC nanocomposite films. J Semicond 33:073001CrossRefGoogle Scholar
  32. Karimov K, Moiz S, Tahir MM, Ahmed N, Tariq R, Abbas S, Zafar Q (2014) Nickel phthalocynanine-metal Schottky diode as photodetector. J Optoelectron Adv Mater 16:1430–1435Google Scholar
  33. Kayahan E (2015) Porous silicon based humidity sensor. Acta Phys Pol A 127:1397–1399CrossRefGoogle Scholar
  34. Khan DN, Sayyad MH, Tahir M, Wahab F, Yaseen M, Ali M, Munawar MA (2014) The sensing of humidity by surface-type Ag/FORMYL-TIPPCu (II)/Ag sensor for environmental. Monit Surf Rev Lett 21:1450048CrossRefGoogle Scholar
  35. Korvink JG, Chandran L, Boltshauser T, Baltes H (1993) Accurate 3D capacitance evaluation in integrated capacitance humidity sensors. Sens Mater 4:323–335Google Scholar
  36. Kotnala R, Shah J, Singh B, Singh S, Dhawan S, Sengupta A (2008) Humidity response of Li-substituted magnesium ferrite. Sens Actuat B 129:909–914CrossRefGoogle Scholar
  37. Kumar H, Srivastava R, Negi P, Agrawal H, Asokan K (2013) Dielectric behaviour of cobalt ferrite nanoparticles. Int J Electr Electron Eng 2:59–66Google Scholar
  38. Laugier M (1981) Adhesion and internal stress in thin films of aluminium. Thin Solid Films 79:15–20CrossRefGoogle Scholar
  39. Li Y, M-j Yang, She Y (2002) A novel resistive humidity sensor based on sodium polystyrenesulfonate/TiO2 nanocomposites. Chin J Polym Sci 20:237–241Google Scholar
  40. Li Y, Yang M, She Y (2004) Humidity sensors using in situ synthesized sodium polystyrenesulfonate/ZnO nanocomposites. Talanta 62:707–712CrossRefGoogle Scholar
  41. Makinudin AHA, Supangat A (2016) Improving the properties of VTP by incorporating fullerene. RSC Adv 6:30963–30971CrossRefGoogle Scholar
  42. Mittal K (1976) Adhesion measurement of thin films. Act Passive Electron Compon 3:21–42Google Scholar
  43. Moiz SA, Ahmed MM, Karimov KS (2005) Effects of temperature and humidity on electrical properties of organic semiconductor orange dye films deposited from solution. Jpn J Appl Phys 44:1199CrossRefGoogle Scholar
  44. Murtaza I, Karimov KS, Ahmad Z, Qazi I, Mahroof-Tahir M, Khan T, Amin T (2010) Humidity sensitive organic field effect transistor. J Semicond 31:054001CrossRefGoogle Scholar
  45. Muthurani S, Balaji M, Gautam S, Chae KH, Song J-H, Padiyan DP, Asokan K (2011) Magnetic and Humidity-Sensing Properties of Nanostructured Cux Co1−x Fe2O4 Synthesized via Autocombustion. J Nanosci Nanotechnol 11:5850–5855CrossRefGoogle Scholar
  46. Naseri MG, Saion EB, Ahangar HA, Shaari AH, Hashim M (2010) Simple synthesis and characterization of cobalt ferrite nanoparticles by a thermal treatment method. J Nanomater 2010:75Google Scholar
  47. Norell MA, Makovicky P, Clark JM (1997) Porous silica via colloidal crystallization. Nature 389:447CrossRefGoogle Scholar
  48. Oliveira G, Clarindo J, Santo K, Souza F Jr (2013) Chemical modification of cobalt ferrite nanoparticles with possible application as asphaltene flocculant agent. Mater Res 16:668–671CrossRefGoogle Scholar
  49. Parvatikar N, Jain S, Khasim S, Revansiddappa M, Bhoraskar S, Prasad MA (2006) Electrical and humidity sensing properties of polyaniline/WO 3 composites. Sens Actuat B 114:599–603CrossRefGoogle Scholar
  50. Parvatikar N, Jain S, Kanamadi C, Chougule B, Bhoraskar S, Prasad M (2007) Humidity sensing and electrical properties of polyaniline/cobalt oxide composites. J Appl Polym Sci 103:653–658CrossRefGoogle Scholar
  51. Petrila I, Tudorache F (2013) Humidity sensor applicative material based on copper-zinc-tungsten spinel ferrite. Mater Lett 108:129–133CrossRefGoogle Scholar
  52. Rabinkin L, Novikova Z (1960) Ferrites, 146 Izv Acad Nauk. USSR, MinskGoogle Scholar
  53. Raza E et al (2016) Influence of thermal annealing on a capacitive humidity sensor based on newly synthesized macroporous PBObzT 2. Sens Actuat B 235:146–153CrossRefGoogle Scholar
  54. Rezlescu N, Iftimie N, Rezlescu E, Doroftei C, Popa P (2006) Semiconducting gas sensor for acetone based on the fine grained nickel ferrite. Sens Actuat B 114:427–432CrossRefGoogle Scholar
  55. Rittersma Z (2002) Recent achievements in miniaturised humidity sensors—a review of transduction techniques. Sens Actuat A 96:196–210CrossRefGoogle Scholar
  56. Saleem M et al (2008) Synthesis and photocapacitive studies of Cu (II) 5, 10, 15, 20-tetrakis (4′-isopropylphenyl) porphyrin. J Optoelectron Adv Mater 10:1468–1472Google Scholar
  57. Santra S et al (2015) CMOS integration of inkjet-printed graphene for humidity sensing. Sci Rep 5:17374CrossRefGoogle Scholar
  58. Schönberg J-N, Kondrashov V, Prokhorov A, Rühe J (2016) Capacitive humidity and dew-point sensing: Influence of wetting of surface-attached polymer monolayers on the sensor response. Sens Actuat B 222:87–94CrossRefGoogle Scholar
  59. Schumann S, Bon SA, Hatton R, Jones TS (2009) Open-cellular organic semiconductor thin films by vertical co-deposition using sub-100 nm nanosphere templates. Chem Commun 42:6478–6480CrossRefGoogle Scholar
  60. Shimizu Y, Egashira M (1999) Basic aspects and challenges of semiconductor gas sensors. Mrs Bulletin 24:18–24CrossRefGoogle Scholar
  61. Tahir M, Hassan Sayyad M, Wahab F, Ahmad Khalid F, Aziz F, Naeem S, Naeem Khalid M (2014a) Enhancement in the sensing properties of methyl orange thin film by TiO2 nanoparticles. Int J Mod Phys B 28:1450032CrossRefGoogle Scholar
  62. Tahir M et al (2014b) Humidity, light and temperature dependent characteristics of Au/N-BuHHPDI/Au surface type multifunctional sensor. Sens Actuat B 192:565–571CrossRefGoogle Scholar
  63. Ueda M, Nakamura K, Tanaka K, Kita H, Okamoto K-I (2007) Water-resistant humidity sensors based on sulfonated polyimides. Sens Actuat B 127:463–470CrossRefGoogle Scholar
  64. ur Rehman F et al (2015) Investigating sensing properties of poly-(dioctylfluorene) based planar sensor. Mater Sci Semicond Process 39:355–361CrossRefGoogle Scholar
  65. Wang J, Wan H, Lin Q (2003) Properties of a nanocrystalline barium titanate on silicon humidity sensor. Meas Sci Technol 14:172CrossRefGoogle Scholar
  66. Wang J, Wu F-Q, Shi K-H, Wang X-H, Sun P-P (2004) Humidity sensitivity of composite material of lanthanum ferrite/polymer quaternary acrylic resin. Sens Actuat B 99:586–591CrossRefGoogle Scholar
  67. Wang S, Kang Y, Wang L, Zhang H, Wang Y, Wang Y (2013) Organic/inorganic hybrid sensors: a review. Sens Actuat B 182:467–481CrossRefGoogle Scholar
  68. Wang P, Su J, Su C-F, Dai W, Cernigliaro G, Sun H (2014) An ultrasensitive quartz crystal microbalance-micropillars based sensor for humidity detection. J Appl Phys 115:224501CrossRefGoogle Scholar
  69. Williams RC, Backus RC (1949) The electron-micrographic structure of shadow-cast films and surfaces. J Appl Phys 20:98–106CrossRefGoogle Scholar
  70. Zafar Q, Sulaiman K (2016) Utility of PCDTBT polymer for the superior sensing parameters of electrical response based relative humidity sensor. React Funct Polym 105:45–51CrossRefGoogle Scholar
  71. Zafar Q, Aziz F, Sulaiman K (2016) Eco-benign visible wavelength photodetector based on phthalocyanine-low bandgap copolymer composite blend. RSC Adv 6:13101–13109CrossRefGoogle Scholar
  72. Zhang Y, Wu J, Zhang Y, Guo W, Ruan S (2014) Characterization and Humidity Sensing Properties of the Sensor Based on Na2Ti3O7 Nanotubes. J Nanosci Nanotechnol 14:4303–4307CrossRefGoogle Scholar
  73. Zhang C, Chen P, Hu W (2015) Organic field-effect transistor-based gas sensors. Chem Soc Rev 44:2087–2107CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Physics, Low Dimensional Materials Research CentreUniversity of MalayaKuala LumpurMalaysia
  2. 2.Department of Chemistry, Faculty of ScienceKing Khalid UniversityAbhaSaudi Arabia
  3. 3.Unit of Science and Technology, Faculty of ScienceKing Khalid UniversityAbhaSaudi Arabia
  4. 4.Research Center for Advanced Materials ScienceKing Khalid UniversityAbhaSaudi Arabia
  5. 5.Department of Physics, Faculty of Sciences and ArtsNajran UniversityNajranSaudi Arabia
  6. 6.Promising Centre for Sensors and Electronic Devices (PCSED)Najran UniversityNajranSaudi Arabia

Personalised recommendations