Advertisement

Reliable and well-controlled synthesis of noble metal nanoparticles by continuous wave laser ablation in different liquids for deposition of thin films with variable optical properties

  • S. M. Arakelyan
  • V. P. Veiko
  • S. V. Kutrovskaya
  • A. O. Kucherik
  • A. V. Osipov
  • T. A. Vartanyan
  • T. E. Itina
Research Paper

Abstract

We report the results of continuous wave laser interactions with both gold and silver targets in the presence of different liquids (deionized water, ethanol, and glycerol). Upon moderate laser irradiation at wavelength of 1.06 nm during 30 min, nanoparticle colloids are shown to be formed with surprisingly narrow size distributions and average dispersion as small as 15–20 nm. The average particle sizes range between 8 and 52 nm for gold and between 20 and 107 nm for silver. This parameter is shown to be stable and well-controlled by such laser parameters as intensity and effective irradiation time, as well as by the choice of the liquid phase. The possibilities of an efficient control over the proposed synthesis techniques are discussed, and the results of a bimetallic Au–Ag structure deposition from the obtained colloids are presented. The formation of the extended arrays of gold and silver nanoparticles with controlled morphology is examined. The changes in the optical properties of the obtained thin films are found to depend on their morphology, in particular, on the particle size, and distance between them.

Graphical Abstract

Keywords

Continuous laser Colloidal solution Nanoparticles Processing 

Notes

Acknowledgments

The study was supported by the Ministry of Education and Science of the Russian Federation (state project no. 2014/13), RBFR Grant number 16-32-60067 mol_a_dk, by the Government of Russian Federation (Grant no. 074-U01), and by France-Russia collaborative project PICS 6106 of DRI CNRS, France.

References

  1. Abramov DV, Antipov AA, Arakelian SM, Khor’kov KS, Kucherik AO, Kutrovskaya SV, Prokoshev VG (2014) New advantages and challenges for laser-induced nanostructured cluster materials: functional capability for experimental verification of macroscopic quantum phenomena. Laser Phys. 24:074010. doi: 10.1088/1054-660X/24/7/074010
  2. Akman E, Genc Oztoprak B, Gunes M, Kacar E, Demir A (2011) Effect of femtosecond Ti:Sapphire laser wavelengths on plasmonic behaviour and size evolution of silver nanoparticles. Photon Nanostruct Fundam Appl 9:276–286. doi: 10.1016/j.photonics.2011.05.004
  3. Antipov AA, Arakelyan SM, Kutrovskaya SV, Kucherik AO, Makarov AA, Nogtev DS, Prokoshev VG (2012) Pulse laser deposition of cluster nanostructures from colloidal single-component systems. Bull Russian Acad Sci Phys 76:611–617. doi: 10.3103/S106287381206007X CrossRefGoogle Scholar
  4. Barcikowski S, Menéndez-Manjón A, Chichkov B, Brikas M, Raiukaitis G (2007) Generation of nanoparticle colloids by picosecond and femtosecond laser ablations in liquid flow. Appl Phys Lett 91:083113. doi: 10.1063/1.2773937 CrossRefGoogle Scholar
  5. Barmina EV, Stratakis E, Fotakis K, Shafeev GA (2010) Generation of nanostructures on metals by laser ablation in liquids: new results. Quantum Electron 40:1012–1020. doi: 10.1070/QE2010v040n11ABEH014444 CrossRefGoogle Scholar
  6. Besner S, Kabashin AV, Meunier M (2007) Two-step femtosecond laser ablation-based method for the synthesis of stable and ultra-pure gold nanoparticles in water Appl. Phys A 88:269–272. doi: 10.1007/s00339-007-4001-1 Google Scholar
  7. Destouches N, Crespo-Monteiro N, Vitrant G, Lefkir Y, Reynaud S, Epicier T, Liu Y, Vocanson F, Pigeon F (2014) Self-organized growth of metallic nanoparticles in a thin film under homogeneous and continuous-wave light excitation. J Mater Chem C 2:6256–6263. doi: 10.1039/C4TC00971A CrossRefGoogle Scholar
  8. Gatskevich EI, Ivlev GD, Chaplanov AM (1995) Melting and solidification of the surface layer of single-crystal silicon heated by pulsed laser radiation. Quantum Electron 22:801–806. doi: 10.1070/QE1995v025n08ABEH000466 Google Scholar
  9. Genov DA, Sarychev AK, Shalaev VM, Wei A (2004) Resonant field enhancements from metal nanoparticle arrays. Nano Lett 4:153–158. doi: 10.1021/nl0343710
  10. Gouriet K, Sentis M, Itina TE (2009) Molecular dynamics study of nanoparticle evaporation and condensation in a gas. J Phys Chem C 113:18462–18467. doi: 10.1021/jp9046648 CrossRefGoogle Scholar
  11. Herminghaus S, Jacobs K, Mecke K, Bischof J, Fery A, Ibn-Elhaj M, Schlagowski S (1998) Spinodal dewetting in liquid crystal and liquid metal films. Science 282:916–919. doi: 10.1126/science.282.5390.916 CrossRefGoogle Scholar
  12. Itina TE (2011) On nanoparticle formation by laser ablation in liquids. J Phys Chem C 115:5044–5048CrossRefGoogle Scholar
  13. Lee K, El-Sayed M (2006) Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. J Phys Chem B 110:19220–19225. doi: 10.1021/jp062536y CrossRefGoogle Scholar
  14. Letfullin R, Joenathan C, George T, Zharov V (2006) Laser-induced explosion of gold nanoparticles: potential role for nanophotothermolysis of cancer. Nanomedicine 1:473–480. doi: 10.2217/17435889.1.4.473 CrossRefGoogle Scholar
  15. Linz N, Freidank S, Liang X-X, Vogelmann H, Trickl T, Vogel A (2015) Wavelength dependence of nanosecond infrared laser-induced breakdown in water: evidence for multiphoton initiation via an intermediate state. Phys Rev B 91:134114. doi: 10.1103/PhysRevB.91.134114 CrossRefGoogle Scholar
  16. Liu Z, Yuan Y, Khan S, Abdolvand A, Whitehead D, Schmid M, Li L (2009) Generation of metal-oxide nanoparticles using continuous-wave fibre laser ablation in liquid. J Micromech Microeng 19:054008. doi: 10.1088/0960-1317/19/5/054008 CrossRefGoogle Scholar
  17. Mafune F, Kohno J, Takeda Y, Kondow T (2003) Formation of stable platinum nanoparticles by laser ablation in water. J Phys Chem B 107:4218–4223. doi: 10.1021/jp021580k CrossRefGoogle Scholar
  18. Makarov GN (2013) Laser applications in nanotechnology: nanofabrication using laser ablation and laser nanolithography. Phys Usp 56:643–682. doi: 10.3367/UFNe.0183.201307a.0673 CrossRefGoogle Scholar
  19. Persson BNJ, Liebsch A (1983) Optical properties of two-dimensional systems of randomly distributed particles. Phys Rev B 28:4247–4254. doi: 10.1103/PhysRevB.28.4247 CrossRefGoogle Scholar
  20. Riabinina D, Chaker M, Margot J (2012) Dependence of gold nanoparticles production on pulse duration by laser ablation in liquid media. Nanotechnology 23:135603. doi: 10.1088/0957-4484/23/13/135603 CrossRefGoogle Scholar
  21. Simakin AV, Voronov VV, Shafeev GA, Brayner R, Bozon-Verduraz F (2001) Nanodisks of Au and Ag produced by laser ablation in liquid environment. Chem Phys Lett 348:182–186. doi: 10.1016/S0009-2614(01)01136-8 CrossRefGoogle Scholar
  22. Sonay AY, Çağlayan AB, Çulha M (2012) Synthesis of peptide mediated Au core-Ag shell nanoparticles as surface-enhanced Raman scattering labels. Plasmonics 7:77–86. doi: 10.1007/s11468-011-9278-4 CrossRefGoogle Scholar
  23. Sylvestre J-P, Kabashin AV, Sacher E, Meunier M, Luong JHT (2004) J Am Chem Soc 126:7176–7177. doi: 10.1021/ja048678s CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • S. M. Arakelyan
    • 1
  • V. P. Veiko
    • 2
  • S. V. Kutrovskaya
    • 1
  • A. O. Kucherik
    • 1
  • A. V. Osipov
    • 1
  • T. A. Vartanyan
    • 2
  • T. E. Itina
    • 3
  1. 1.A.G. and N.G. Stoletov Vladimir State University (VSU)VladimirRussia
  2. 2.St. Petersburg National Research University of Information Technologies, Mechanics and OpticsSt. PetersburgRussia
  3. 3.Laboratoire Hubert CurienUniversité de Lyon, UJM-Saint-Etienne, CNRS, UMR5516Saint-EtienneFrance

Personalised recommendations