Advertisement

The cytotoxicity studies of water-soluble InP/ZnSe quantum dots

  • Ayabei Kiplagat
  • Nicole R. S. Sibuyi
  • Martin O. OnaniEmail author
  • Mervin Meyer
  • Abram M. Madiehe
Research Paper

Abstract

Biomedical applications require nanocrystals with a narrow emission spectra and low toxicity. One major challenge of using quantum dots (QDs) in biomedical studies has been to synthesize them in large quantities while retaining desirable optical properties. To date, no research has been carried out to scale up the synthesis of InP/ZnSe nanocrystals. In this regard we synthesized InP/ZnSe nanocrystals using lower volumes and masses and scaled up the synthesis while retaining their molar ratios. The properties of the products obtained in small scale and scaled up syntheses were compared in regard to changes in particle size, emission wavelength and the trend of fluorescence of the aliquots. The particle size for the small scale reaction was determined to be 4.18 nm. When the synthesis was scaled up by a factor of 2, 4 and 6, the sizes were found to increase to 4.31, 4.13 and 4.37 nm, respectively. We also demonstrated the ability to tune the emission wavelength by sorting the particles in the crude product to different sizes. The size sorting process gave QDs with varied emission wavelengths and also narrow emission spectra. We further demonstrated a facile method for their water solubility as well as suitability for various biological applications. The toxicity of the synthesized InP/ZnSe nanocrystals was investigated. The cytotoxicity studies were carried out using two different types of non-cancerous human cell lines, namely KMST6 and MCF-12A, which clearly showed that the nanocrystals have low toxicity and are suitable for biological applications.

Keywords

Biomedical Cell line Cytotoxicity Fluorescence Nanocrystals Scale up Size sorting quantum dots Environmental effects 

Notes

Acknowledgments

The authors are indebted to DST/MINTEK Nanotechnology Innovation Centre, Nation Research foundation (NRF) and the University of the Western Cape (UWC) for financial support.

References

  1. Abràmofff MD, Magalhães PJ, Ram SJ (2005) Image processing with ImageJ Part II. Biophotonics Int 11:36–43. doi: 10.1117/1.3589100 Google Scholar
  2. Brunetti V, Chibli H, Fiammengo R et al (2012) InP/ZnS as a safer alternative to CdSe/ZnS core/shell quantum dots: an in vitro and in vivo toxicity assessment. Nanoscale. doi: 10.1039/c2nr33024e Google Scholar
  3. Byun HJ, Lee JC, Yang H (2011a) Solvothermal synthesis of InP quantum dots and their enhanced luminescent efficiency by post-synthetic treatments. J Colloid Interface Sci 355:35–41. doi: 10.1016/j.jcis.2010.12.013 CrossRefGoogle Scholar
  4. Byun H-J, Song W-S, Yang H (2011b) Facile consecutive solvothermal growth of highly fluorescent InP/ZnS core/shell quantum dots using a safer phosphorus source. Nanotechnology 22:1–6. doi: 10.1088/0957-4484/22/23/235605 CrossRefGoogle Scholar
  5. Chan WCW, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018. doi: 10.1126/science.281.5385.2016 CrossRefGoogle Scholar
  6. Chen O, Wei H, Maurice A et al (2013) Pure colors from core—shell quantum dots. MRS Bull 38:696–702CrossRefGoogle Scholar
  7. Cho E, Jang H, Lee J, Jang E (2013) Modeling on the size dependent properties of InP quantum dots: a hybrid functional study. Nanotechnology 24:215201. doi: 10.1088/0957-4484/24/21/215201 CrossRefGoogle Scholar
  8. Cros-Gagneux A, Delpech F, Nayral C et al (2010) Surface chemistry of InP quantum dots: a comprehensive study. J Am Chem Soc 132:18147–18157. doi: 10.1021/ja104673y CrossRefGoogle Scholar
  9. Cui J, Beyler AP, Coropceanu I et al (2015) The evolution of the single-nanocrystal fluorescence linewidth with size and shell: implications for exciton-phonon coupling and the optimization of spectral linewidths. Nano Lett 16:289–296. doi: 10.1021/acs.nanolett.5b03790 CrossRefGoogle Scholar
  10. Gary DC, Cossairt BM (2013) The role of acid in modulating precursor conversion in InP-QD synthesis. Chem Mater 25:2463–2469CrossRefGoogle Scholar
  11. Gary DC, Glassya B, Cossairt BM (2014) Investigation of indium phosphide quantum dot nucleation and growth utilizing triarylsilylphosphine precursors. Chem Mater 26:1734–1744.  10.1021/cm500102q
  12. Gary DC, Terban MW, Billinge SJL, Cossairt BM (2015) Two-step nucleation and growth of InP quantum dots via magic- sized cluster intermediates. Chem Mater 27:1432–1441. doi: 10.1021/acs.chemmater.5b00286 CrossRefGoogle Scholar
  13. Godt J, Scheidig F, Grosse-Siestrup C et al (2006) The toxicity of cadmium and resulting hazards for human health. J Occup Med Toxicol 1:1–6. doi: 10.1186/1745-6673-1-22 CrossRefGoogle Scholar
  14. Joung S, Yoon S, Han C et al (2012) Facile synthesis of uniform large-sized InP nanocrystal quantum dots using tris (tert—butyldimethylsilyl) phosphine. Nanoscale Res Lett 7:93. doi: 10.1186/1556-276X-7-93 CrossRefGoogle Scholar
  15. Li L, Protière M, Reiss P (2008) Economic synthesis of high quality InP nanocrystals using calcium phosphide as the phosphorus precursor. Chem Mater 20:2621–2623. doi: 10.1021/cm7035579 CrossRefGoogle Scholar
  16. Mocatta D, Cohen G, Schattner J et al (2011) Heavily doped semiconductor nanocrystal quantum dots. Science 332:77–81. doi: 10.1126/science.1196321 CrossRefGoogle Scholar
  17. Mushonga P, Onani MO, Madiehe AM, Meyer M (2013) One-pot synthesis and characterization of InP/ZnSe semiconductor nanocrystals. Mater Lett 95:37–39. doi: 10.1016/j.matlet.2012.12.102 CrossRefGoogle Scholar
  18. Naqvi S, Samim M, Abdin MZ et al (2010) Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. Int J Nanomedicine 5:983–989. doi: 10.2147/IJN.S13244 CrossRefGoogle Scholar
  19. Park J, Kim S, Kim S et al (2010) Fabrication of highly luminescent InP/Cd and InP/CdS quantum dots. J Lumin 130:1825–1828. doi: 10.1016/j.jlumin.2010.04.017 CrossRefGoogle Scholar
  20. Riffle JS, Harris-shekhawat L, Carmichael-baranauskas A et al (2009) Cell uptake and in vitro toxicity of magnetic nanoparticles suitable for drug delivery. Mol Pharm 6:1417–1428CrossRefGoogle Scholar
  21. Sapsford KE, Pons T, Medintz IL, Mattoussi H (2006) Biosensing with luminescent semiconductor quantum dots. Sensors 6:925–953. doi: 10.3390/s6080925 CrossRefGoogle Scholar
  22. Senthilkumar K, Kalaivani T, Kanagesan S et al (2013) Wurtzite ZnSe quantum dots: synthesis, characterization and PL properties. J Mater Sci 24:692–696. doi: 10.1007/s10854-012-0796-4 Google Scholar
  23. Sukanya D, Sagayaraj P (2015) Facile synthesis and characterization of MPA capped CdSe and CdSe/ZnS nanocrystals. Int J Chem Tech Res 7:1421–1425Google Scholar
  24. Thomas A, Nair PV, George Thomas K, Thomas KG (2014) InP quantum dots: an environmentally friendly material with resonance energy transfer requisites. J Phys Chem C 118:3838–3845. doi: 10.1021/jp500125v CrossRefGoogle Scholar
  25. Xie R, Peng X (2009) Synthesis of Cu-doped InP nanocrystals (d-dots) with ZnSe diffusion barrier as efficient and color-tunable NIR emitters. J Am Chem Soc 131:10645–10651. doi: 10.1021/ja903558r CrossRefGoogle Scholar
  26. Yu WW, Chang E, Drezek R, Colvin VL (2006) Water-soluble quantum dots for biomedical applications. Biochem Biophys Res Commun 348:781–786. doi: 10.1016/j.bbrc.2006.07.160 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Ayabei Kiplagat
    • 1
  • Nicole R. S. Sibuyi
    • 2
  • Martin O. Onani
    • 1
    Email author
  • Mervin Meyer
    • 2
  • Abram M. Madiehe
    • 2
  1. 1.Department of Chemistry, DST/Mintek Nanotechnology Innovation CentreUniversity of the Western CapeBellvilleSouth Africa
  2. 2.Department of Biotechnology, DST/Mintek Nanotechnology Innovation CentreUniversity of the Western CapeBellvilleSouth Africa

Personalised recommendations