Advertisement

Direct synthesis of silver nanoparticles in ionic liquid

  • Cíntia M. Corrêa
  • Marcos A. Bizeto
  • Fernanda F. Camilo
Research Paper

Abstract

Ionic liquids have structural organization at nanoscale that can trigger the spontaneous ordering of structures in nanoscopic range. Due to this characteristic, several metal nanoparticles have been prepared in this media. In this paper, we describe the direct preparation of silver nanoparticles in the following imidazolium ionic liquids: 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, 1,2-dimethyl-3-butylimidazolium bis(trifluoromethanesulfonyl)imide, 1-butyl-3-methylimidazolium tetrafluoroborate, 1-octyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, and in citrate tetrabutylammonium, that is an ionic liquid that acts as solvent and reducing agent at the same time. We also evaluated the morphology of the nanoparticles and the stability of the dispersions. Spherical silver nanoparticles with surface Plasmon bands in the range of 400–430 nm were produced in all the ionic liquids, with the only exception for the 1-octyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide that produced a black precipitate. The best results were obtained by using 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide and citrate tetrabutylammonium ionic liquids. The former resulted in concentrated spherical silver nanoparticles dispersion (ca. 1.0 mM of Ag) with diameters ranging from 6 to 12 nm and by adding polyvinylpyrrolidone (PVP) to the dispersions they became stable for at least 1 month. The citrate tetrabutylammonium ionic liquid produced even more concentrated dispersion of spherical silver nanoparticles with diameters ranging from 2 to 6 nm. These dispersions were quite stable without the need of PVP, since the Plasmon band in the electronic absorption spectra remained unaltered for months after the preparation. The citrate tetrabutylammonium ionic liquid offers a slow kinetic for the silver nanoparticle formation as the citrate is a milder reducing agent than borohydride.

Graphical Abstract

Keywords

Silver nanoparticles Ionic liquid All-in-one synthesis Long-term stability Imidazolium salts 

Notes

Acknowledgments

Cíntia M. Corrêa thanks CAPES for master scholarship and F.F. Camilo also recognizes FAPESP for the financial support (2014/23065-3). The authors also acknowledge the transmission electron microscopy support of LNNano—Center for Nanoscience and Nanotechnology/MCT (research proposal TEM-MSC 15017).

Supplementary material

11051_2016_3436_MOESM1_ESM.docx (460 kb)
Supplementary material 1 (DOCX 460 kb)

References

  1. An J, Wang DS, Luo QZ, Yuan XY (2009) Antimicrobial active silver nanoparticles and silver/polystyrene core-shell nanoparticles prepared in room-temperature ionic liquid. Mater Sci Eng 29:1984–1989. doi: 10.1016/j.msec.2009.03.015 CrossRefGoogle Scholar
  2. Camilo FF, Kawano Y, Torresi RM (2007) Synthesis and characterization of two ionic liquids with emphasis on their chemical stability towards metallic lithium. Electrochim Acta 52:6427–6437. doi: 10.1016/j.electacta.2007.04.064 CrossRefGoogle Scholar
  3. Choi S, Kim KS, Yeon SH, Cha JH, Lee H, Kin CJ, Yoo ID (2007) Fabrication of silver nanoparticles via self-regulated reduction by 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate. Korean J Chem Eng 24:856–859. doi: 10.1007/s11814-007-0054-2 CrossRefGoogle Scholar
  4. Consorti CS, Suarez PAZ, Souza RF, Burrow RA, Farrar DH, Lough AJ, Loh W, Silva LHM, Dupont J (2005) Identification of 1,3-dialkylimidazolium salt supramolecular aggregates in solution. J Phys Chem B 109:4341–4349. doi: 10.1021/jp0452709 CrossRefGoogle Scholar
  5. Correa CM, Faez R, Bizeto MA, Camilo FF (2012) One-pot synthesis of a polyaniline-silver nanocomposite prepared in ionic liquid. RSC Adv 2:3088–3093. doi: 10.1039/c2ra00992g CrossRefGoogle Scholar
  6. Dupont J (2004) On the solid, liquid and solution structural organization of imidazolium ionic liquids. J Braz Chem Soc 15:341–350. doi: 10.1590/S0103-50532004000300002 CrossRefGoogle Scholar
  7. Dupont J, Scholten JD (2010) On the structural and surface properties of transition-metal nanoparticles in ionic liquids. Chem Soc Rev 39:1780–1804. doi: 10.1039/b822551f CrossRefGoogle Scholar
  8. Dupont J, Suarez PAZ (2006) Physico-chemical processes in imidazolium ionic liquids. Phys Chem Chem Phys 8:2441–2452. doi: 10.1039/b602046a CrossRefGoogle Scholar
  9. Dupont J, Suarez PAZ, Souza RF, Burrow RA, Kintzinger JP (2000) C–H-pi interactions in 1-n-butyl-3-methylimidazolium tetraphenylborate molten salt: solid and solution structures. Chem Eur J 6:2377–2381. doi: 10.1002/1521-3765(20000703)6:13<2377:AID-CHEM2377>3.0.CO;2-L CrossRefGoogle Scholar
  10. Fages E, Pascual J, Fenollar O, García-Sanoguera D, Balart R (2011) Study of antibacterial properties of polypropylene filled with surfactant-coated silver nanoparticles. Polym Eng Sci 51:804–811. doi: 10.1002/pen.21889 CrossRefGoogle Scholar
  11. Gao JH, Gu HW, Xu B (2009) Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc Chem Res 42:1097–1107. doi: 10.1021/ar9000026 CrossRefGoogle Scholar
  12. Guzman M, Dille J, Godet S (2012) Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomed-Nanotechnol 8:37–45. doi: 10.1016/j.nano.2011.05.007 CrossRefGoogle Scholar
  13. Hallett JP, Welton T (2011) Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem Rev 111:3508–3576. doi: 10.1021/cr1003248 CrossRefGoogle Scholar
  14. Harada M, Yamada M, Kimura Y, Saijo K (2013) Influence of the organization of water-in-ionic liquid microemulsions on the size of silver particles during photoreduction. J Colloid Interface Sci 406:94–104. doi: 10.1016/j.jcis.2013.05.068 CrossRefGoogle Scholar
  15. Hutter E, Fendler JH (2004) Exploitation of localized surface plasmon resonance. Adv Mater 16:1685–1706. doi: 10.1002/adma.200400271 CrossRefGoogle Scholar
  16. Iida M, Baba C, Inoue M, Yoshida H, Taguchi E, Furusho H (2008) Ionic liquids of bis(alkylethylenediamine)silver(I) salts and the formation of silver(0) nanoparticles from the ionic liquid system. Chem Eur J 14:5047–5056. doi: 10.1002/chem.200701764 CrossRefGoogle Scholar
  17. Ji QM, Acharya S, Richards GJ, Zhang SL, Vieaud J, Hill JP, Ariga K (2013) Alkyl imidazolium ionic-liquid-mediated formation of gold particle superstructures. Langmuir 29:7186–7194. doi: 10.1021/la304503j CrossRefGoogle Scholar
  18. Kim TY, Kim WJ, Hong SH, Kim JE, Suh KS (2009) Ionic-liquid-assisted formation of silver nanowires. Angew Chem Int Ed 48:3806–3809. doi: 10.1002/anie.200806379 CrossRefGoogle Scholar
  19. Kim TY, Yeon JH, Kim SR, Kim CY, Shim JP, Suh KS (2011) Shape-controlled synthesis of silver crystals mediated by imidazolium-based ionic liquids. Phys Chem Chem Phys 13:16138–16141. doi: 10.1039/c1cp20582j CrossRefGoogle Scholar
  20. Lazarus LL, Riche CT, Malmstadt N, Brutchey RL (2012) Effect of ionic liquid impurities on the synthesis of silver nanoparticles. Langmuir 28:5987–15993. doi: 10.1021/la303617f CrossRefGoogle Scholar
  21. Li ZH, Jia Z, Luan YX, Mu TC (2008) Ionic liquids for synthesis of inorganic nanomaterials. Curr Opin Solid State Mater Sci 12:1–8. doi: 10.1016/j.cossms.2009.01.002 CrossRefGoogle Scholar
  22. Li XG, Ma XL, Sun J, Hung MR (2009) Powerful reactive sorption of silver(I) and mercury(II) onto poly(o-phenylenediamine) microparticles. Langmuir 25:1675–1684. doi: 10.1021/la802410p CrossRefGoogle Scholar
  23. Li WR, Xie XB, Shi QS, Zeng HY, Ou-Yang YS, Chen YB (2010a) Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 85:1115–1122. doi: 10.1007/s00253-009-2159-5 CrossRefGoogle Scholar
  24. Li XG, Feng H, Huang MR (2010b) Redox sorption and recovery of silver ions as silver nanocrystals on poly(aniline-co-5-sulfo-2-anisidine) nanosorbents. Chem Eur J 16:10113–10123. doi: 10.1002/chem.201000506 CrossRefGoogle Scholar
  25. Lu WW, Yao KS, Wang JJ, Yuan JL (2015) Ionic liquids-water interfacial preparation of triangular Ag nanoplates and their shape-dependent antibacterial activity. J Colloid Interface Sci 437:35–41. doi: 10.1016/j.jcis.2014.09.001 CrossRefGoogle Scholar
  26. Ma Z, Yu J, Dau S (2010) Preparation of inorganic materials using ionic liquids. Adv Mater 22:261–285. doi: 10.1002/adma.200900603 CrossRefGoogle Scholar
  27. Maity A, Jaffer SS, Das T, Ghosh P, Purkayastha P (2011) Orientation of a TICT probe trapped in the peripheral confined water created by ionic surfactant envelope around silver nanoparticles. Langmuir 27:4068–4075. doi: 10.1021/la1048858 CrossRefGoogle Scholar
  28. Maneerung T, Tokura T, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72:43–51. doi: 10.1016/j.carbpol.2007.07.025 CrossRefGoogle Scholar
  29. Mock JJ, Barbic M, Smith DR, Schultz DA, Schultz S (2002) Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys 116:6755–6759. doi: 10.1063/1.1462610 CrossRefGoogle Scholar
  30. Monteiro MJ, Camilo FF, Ribeiro MCC, Torresi RM (2010) Ether-bond-containing ionic liquids and the relevance of the ether bond position to transport properties. J Phys Chem B 144:12488–12494. doi: 10.1021/jp104419k CrossRefGoogle Scholar
  31. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353. doi: 10.1088/0957-4484/16/10/059 CrossRefGoogle Scholar
  32. Mulfinger L, Solomon SD, Bahadory M, Jeyarajasingam AV, Rutkowsky SA, Boritz C (2007) Synthesis and study of silver nanoparticles. J Chem Educ 84:322–332. doi: 10.1021/ed084p322 CrossRefGoogle Scholar
  33. Nadagouda MN, Varma RS (2007) Room temperature bulk synthesis of silver nanocables wrapped with polypyrrole. Macromol Rapid Commun 28:2106–2111. doi: 10.1002/marc.200700495 CrossRefGoogle Scholar
  34. Neouze M-A (2010) About the interactions between nanoparticles and imidazolium moieties: emergence of original hybrid materials. J Mater Chem 20:9593–9607. doi: 10.1039/c0jm00616e CrossRefGoogle Scholar
  35. Penchera D, Bryaskova R, Kantardjiev T (2012) Polyvinyl alcohol/silver nanoparticles (PVA/AgNps) as a model for testing the biological activity of hybrid materials with included silver nanoparticles. Mater Sci Eng, C 32:2048–2051. doi: 10.1016/j.msec.2012.05.016 CrossRefGoogle Scholar
  36. Pillai Z, Kamat PV (2004) What factors control the size and shape of silver nanoparticles in the citrate ion reduction method? J Phys Chem B 108:945–951. doi: 10.1021/jp037018r CrossRefGoogle Scholar
  37. Redel E, Thomann R, Janiak C (2008) First correlation of nanoparticle size-dependent formation with the ionic liquid anion molecular volume. Inorg Chem 47:14–16. doi: 10.1021/ic702071w CrossRefGoogle Scholar
  38. Roduner E (2006) Size matters: why nanomaterials are different. Chem Soc Rev 35:583–592. doi: 10.1039/b502142c CrossRefGoogle Scholar
  39. Saadeh SM, Yasseen Z, Sharif FA, Abu Shawish HM (2009) New room temperature ionic liquids with interesting ecotoxicological and antimicrobial properties. Ecotoxicol Environ Safe 72:1805–1809. doi: 10.1016/j.ecoenv.2008.12.015 CrossRefGoogle Scholar
  40. Setua P, Pramanik R, Sarkar S, Ghatak C, Rao VG, Sarkar N, Das SK (2011) Synthesis of silver nanoparticle in imidazolium and pyrolidium based ionic liquid reverse micelles: a step forward in nanostructure inorganic material in room temperature ionic liquid field. J Mol Liq 162:33–37. doi: 10.1016/j.molliq.2011.05.015 CrossRefGoogle Scholar
  41. Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145:83–96. doi: 10.1016/j.cis.2008.09.002 CrossRefGoogle Scholar
  42. Soni SS, Vekariya RL, Aswal VK (2013) Ionic liquid induced sphere-to-ribbon transition in the block copolymer mediated synthesis of silver nanoparticles. RSC Adv 3:8398–8406. doi: 10.1039/c3ra41138a CrossRefGoogle Scholar
  43. Torimoto T, Tsuda T, Okazaki K, Kuwabata S (2010) New frontiers in materials science opened by ionic liquids. Adv Mater 22:1196–1221. doi: 10.1002/adma.200902184 CrossRefGoogle Scholar
  44. Ueno K, Tokuda H, Watanabe M (2010) Ionicity in ionic liquids: correlation with ionic structure and physicochemical properties. Phys Chem Chem Phys 12:1649–1658. doi: 10.1039/b921462n CrossRefGoogle Scholar
  45. Vollmer C, Janiak C (2011) Naked metal nanoparticles from metal carbonyls in ionic liquids: easy synthesis and stabilization. Coord Chem Rev 255:2039–2057. doi: 10.1016/j.ccr.2011.03.005 CrossRefGoogle Scholar
  46. Wang Y, Yang H (2006) Oleic acid as the capping agent in the synthesis of noble metal nanoparticles in imidazolium-based ionic liquids. Chem Commun 24:2545–2547. doi: 10.1039/b604269d CrossRefGoogle Scholar
  47. Welton T (2004) Ionic liquids in catalysis. Coord Chem Rev 248:2459–2477. doi: 10.1016/j.ccr.2004.04.015 CrossRefGoogle Scholar
  48. Ya KS, Lu WW, Li XY, Wang JJ, Yuan JL (2013) Tunable synthesis of Ag films at ionic liquid-aqueous interfaces. Chem Commun 49:1398–1400. doi: 10.1039/c2cc38375f CrossRefGoogle Scholar
  49. Zhang C, Chen J, Zhou Y, Li D (2008) Ionic liquid-based “all-in-one” synthesis and photoluminescence properties of lanthanide fluorides. J Phys Chem C 112:10083–10088. doi: 10.1021/jp802083q CrossRefGoogle Scholar
  50. Zhang W, Yao Y, Li KG, Huang Y, Chen YS (2011) Influence of dissolved oxygen on aggregation kinetics of citrate-coated silver nanoparticles. Environ Pollut 159:3757–3762. doi: 10.1016/j.envpol.2011.07.013 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Cíntia M. Corrêa
    • 1
  • Marcos A. Bizeto
    • 1
  • Fernanda F. Camilo
    • 1
  1. 1.Laboratório de Materiais Híbridos, Departamento de Ciências Exatas e da Terra, Instituto de Ciências Ambientais, Químicas e FarmacêuticasUniversidade Federal de São PauloDiademaBrazil

Personalised recommendations