Development of novel FePt/nanodiamond hybrid nanostructures: L10 phase size-growth suppression and magnetic properties

  • A. P. Douvalis
  • A. B. Bourlinos
  • J. Tucek
  • K. Čépe
  • T. Bakas
  • R. Zboril
Research Paper


A new type of hybrid nanomaterial composed of magnetic FePt nanoparticles grown on the surface of nanodiamond nanotemplate assemblies is described for the first time. Post annealing in vacuum of the as-made nanomaterial bearing cubic A1 soft magnetic FePt nanoparticles leads to the development of FePt nanoparticles with tetragonal L10 hard, magnetic-phase characteristics, leaving untouched the nanodiamond nanotemplate assemblies. X-ray diffraction, high-resolution transmission electron microscopy including chemical mapping (HRTEM/HAADF), magnetization measurements, and 57Fe Mössbauer spectroscopy data show that the magnetic FePt nanoparticles, with average sizes of 3 and 8 nm in the as-made and annealed hybrids, respectively, are homogenously distributed within the nanodiamond template in both nanomaterials. As a consequence, their structural, morphological, and magnetic properties differ significantly from the corresponding properties of the nonsupported (free) as-made and annealed FePt nanoparticles with average sizes of 6 and 32 nm, respectively, developed by the same methods. This spatial isolation suppresses the size-growth of the FePt nanoparticles during the post-annealing procedure, triggering superparamagnetic relaxation phenomena, which are exposed as a combination of hard and soft magnetic-phase characteristics.


Nanodiamonds–FePt nanoparticles nanohybrids Size-growth-suppression Structural–magnetic properties Transmission Electron Microscopy Mössbauer spectroscopy 



The authors acknowledge the support from the Ministry of Education, Youth and Sports of the Czech Republic (LO1305). The authors also acknowledge the assistance provided by the Research Infrastructure NanoEnviCz, supported by the Ministry of Education, Youth and Sports of the Czech Republic under Project No. LM2015073.

Supplementary material

11051_2016_3424_MOESM1_ESM.docx (1.4 mb)
Additional TEM images of the as-made and annealed free FePt and hybrid FePt/NDs samples; ZFC and FC magnetic susceptibility versus temperature measurements of all samples under an applied magnetic field of 0.10 T (DOCX 1390 kb)


  1. Ahmad RK, Parada AC, Jackman RB (2011) Nanodiamond-gated silicon ion-sensitive field effect transistor. Appl Phys Lett 98:153507. doi: 10.1063/1.3568887 CrossRefGoogle Scholar
  2. Bourlinos AB, Panagiotopoulos I, Niarchos D, Petridis D (2004) Hydrophilic Co-Pt alloy nanoparticles: synthesis, characterization, and perspectives. J Mater Res 19:1227–1233. doi: 10.1557/JMR.2004.0159 CrossRefGoogle Scholar
  3. Bourlinos AB et al (2011) Fabrication of fluorescent nanodiamond@C core-shell hybrids via mild carbonization of sodium cholate-nanodiamond complexes. J Mater Sci 46:7912–7916. doi: 10.1007/s10853-011-5911-z CrossRefGoogle Scholar
  4. Branson BT, Beauchamp PS, Beam JC, Lukehart CM, Davidson JL (2013) Nanodiamond Nanofluids for Enhanced Thermal Conductivity. ACS Nano 7:3183–3189. doi: 10.1021/nn305664x CrossRefGoogle Scholar
  5. Buzug TM, Borgert J, Knopp T, Biederer S, Sattel TF, Erbe M, Lüdtke-Buzug K (2010) Magnetic Nanoparticles: Particle Science, Imaging Technology, and Clinical Applications. World Scientific Publishing, SingaporeCrossRefGoogle Scholar
  6. Chen M, Liu JP, Sun S (2004) One-step synthesis of FePt nanoparticles with tunable size. J Am Chem Soc 126:8394–8395. doi: 10.1021/ja047648m CrossRefGoogle Scholar
  7. Chen M, Pierstorff ED, Lam R, Li SY, Huang H, Osawa E, Ho D (2009) Nanodiamond-mediated delivery of water-insoluble therapeutics. ACS Nano 3:2016–2022. doi: 10.1021/nn900480m CrossRefGoogle Scholar
  8. Cheng LC et al (2013) Targeting polymeric fluorescent nanodiamond-gold/silver multi-functional nanoparticles as a light-transforming hyperthermia reagent for cancer cells. Nanoscale 5:3931–3940. doi: 10.1039/c3nr34091k CrossRefGoogle Scholar
  9. Chepulskii RV, Butler WH (2005) Temperature and particle-size dependence of the equilibrium order parameter of FePt alloys. Phys Rev B 72:134205. doi: 10.1103/PhysRevB.72.134205 CrossRefGoogle Scholar
  10. Chepulskii RV, Butler WH, van der Walle A, Curtarolo S (2010) Surface segregation in nanoparticles from first principles: the case of FePt. Scr Mater 62:179–182. doi: 10.1016/j.scriptamat.2009.10.019 CrossRefGoogle Scholar
  11. Colak L, Hadjipanayis GC (2009) Chemically synthesized FePt nanoparticles with controlled particle size, shape and composition. Nanotechnology 20(48):485602. doi: 10.1088/0957-4484/20/48/485602 CrossRefGoogle Scholar
  12. Cullity BD (1956) Elements of X-ray Diffraction. Addison-Wesley, MassachusettsGoogle Scholar
  13. Cullity BD, Graham CD (2009) Introduction to Magnetic Materials. Wiley, HobokenGoogle Scholar
  14. Danilenko VV (2004) On the history of the discovery of nanodiamond synthesis. Phys Solid State 46:595–599CrossRefGoogle Scholar
  15. Dormann JL, Fiorani D, Tronc E (1997) Magnetic relaxation in fine-particle systems. Adv Chem Phys 98:283–494Google Scholar
  16. Douvalis AP, Polymeros A, Bakas T (2010) IMSG09: a 57Fe-119Sn Mössbauer spectra computer fitting program with novel interactive user interface. J Phys 217:012014Google Scholar
  17. Douvalis AP, Zboril R, Bourlinos AB, Tucek J, Spyridi S, Bakas T (2012) A facile synthetic route toward air-stable magnetic nanoalloys with Fe-Ni/Fe-Co core and iron oxide shell. J Nanopart Res 14:1130. doi: 10.1007/s11051-012-1130-z CrossRefGoogle Scholar
  18. Fiorani D (2005) Surface effects in magnetic nanoparticles. Springer, New YorkCrossRefGoogle Scholar
  19. Frey NA, Peng S, Cheng K, Sun S (2009) Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem Soc Rev 38:2532–2542. doi: 10.1039/b815548h CrossRefGoogle Scholar
  20. Ganesh P, Kent PRC, Mochalin V (2011) Formation, characterization, and dynamics of onion-like carbon structures for electrical energy storage from nanodiamonds using reactive force fields. J Appl Phys 110:073506. doi: 10.1063/1.3641984 CrossRefGoogle Scholar
  21. Goto T, Utsugi H, Watanabe K (1990) Mössbauer study of permanent magnets Fe-Pt. Hyperfine Interact 54:539–544CrossRefGoogle Scholar
  22. Greenwood NN, Gibb TC (1971) Mössbauer spectroscopy. Chapman and Hall Ltd, LondonCrossRefGoogle Scholar
  23. Gubin SP (2009) Magnetic Nanoparticles. Wiley, WeinheimCrossRefGoogle Scholar
  24. Guo S, Sun S (2012) FePt nanoparticles assembled on graphene as enhanced catalyst for oxygen reduction reaction. J Am Chem Soc 134:2492–2495. doi: 10.1021/ja2104334 CrossRefGoogle Scholar
  25. Ho D (2010) Nanodiamonds: applications in biology and nanoscale medicine. Springer, New YorkCrossRefGoogle Scholar
  26. Hoinville J et al (2003) High density magnetic recording on protein-derived nanoparticles. J Appl Phys 93:7187–7189. doi: 10.1063/1.1555896 CrossRefGoogle Scholar
  27. Hsu SH, Kang WP, Davidson JL, Huang JH, Kerns DV (2013) Nanodiamond vacuum field emission integrated differential amplifier. IEEE Trans Electron Devices 60:487–493. doi: 10.1109/TED.2012.2228485 CrossRefGoogle Scholar
  28. Hu Q et al (2012) Self-assembly of colloidal γ-Fe2O3 and FePt nanoparticles on carbon nanotubes by dip-coating process. J Nanosci Nanotechnol 12:1709–1712. doi: 10.1166/jnn.2012.4684 CrossRefGoogle Scholar
  29. Hu XC, Agostinelli E, Ni C, Hadjipanayis GC, Capobianchi A (2014) A low temperature and solvent-free direct chemical synthesis of L1 0 FePt nanoparticles with size tailoring. Green Chem 16:2292–2297. doi: 10.1039/c3gc42186d CrossRefGoogle Scholar
  30. In PC, Kuo CH, Chiang CS (2008) Preparation of fluorescent magnetic nanodiamonds and cellular imaging. J Am Chem Soc 130:15476–15481. doi: 10.1021/ja804253y CrossRefGoogle Scholar
  31. Kavan L (2014) Exploiting nanocarbons in dye-sensitized solar cells. Top Curr Chem 348:53–94. doi: 10.1007/128-2013-447 CrossRefGoogle Scholar
  32. Kockrick E, Krawiec P, Schnelle W, Geiger D, Schappacher FM, Pöttgen R, Kaskel S (2007) Space-confined formation of fept nanoparticles in ordered mesoporous silica SBA-15. Adv Mater 19:3021–3026. doi: 10.1002/adma.200601367 CrossRefGoogle Scholar
  33. Kostopoulou A et al (2014) Assembly-mediated interplay of dipolar interactions and surface spin disorder in colloidal maghemite nanoclusters. Nanoscale 6:3764–3776. doi: 10.1039/c3nr06103e CrossRefGoogle Scholar
  34. Kumar A, Ann Lin P, Xue A, Hao B, Khin Yap Y, Sankaran RM (2013) Formation of nanodiamonds at near-ambient conditions via microplasma dissociation of ethanol vapour. Nat Commun 4:2618. doi: 10.1038/ncomms3618 Google Scholar
  35. La-Torre-Riveros L, Abel-Tatis E, Méndez-Torres AE, Tryk DA, Prelas M, Cabrera CR (2011) Synthesis of platinum and platinum-ruthenium-modified diamond nanoparticles. J Nanopart Res 13:2997–3009. doi: 10.1007/s11051-010-0196-8 CrossRefGoogle Scholar
  36. Lewis RS, Ming T, Wacker JF, Anders E, Steel E (1987) Interstellar diamonds in meteorites. Nature 326:160–162CrossRefGoogle Scholar
  37. Lin CR, Wei DH, Bendao MK, Chang HM, Chen WE, Lee JA (2014) Effects of surface modification of nanodiamond particles for nucleation enhancement during its film growth by microwave plasma jet chemical vapour deposition technique. Adv Mater Sci Eng 2014:937159. doi: 10.1155/2014/937159 Google Scholar
  38. Liu YL, Sun KW (2011) Plasmon-enhanced photoluminescence from bioconjugated gold nanoparticle and nanodiamond assembly. Appl Phys Lett 98:153702. doi: 10.1063/1.3576852 CrossRefGoogle Scholar
  39. Liu H et al (2014a) A nanodiamond/CNT-SiC monolith as a novel metal free catalyst for ethylbenzene direct dehydrogenation to styrene. Chem Commun 50:7810–7812. doi: 10.1039/c4cc01693a CrossRefGoogle Scholar
  40. Liu Y et al (2014b) Structural and magnetic properties of the ordered FePt3, FePt and Fe3Pt nanoparticles. J Solid State Chem 209:69–73. doi: 10.1016/j.jssc.2013.10.027 CrossRefGoogle Scholar
  41. Lyubina J, Rellinghaus B, Gutfleisch O, Albrecht M (2011) Structure and Magnetic Properties of L10-Ordered Fe–Pt Alloys and Nanoparticles. In: Buschow KHJ (ed) Handbook of Magnetic Materials, vol 19. Elsevier, Oxford, pp 291–407Google Scholar
  42. Manus LM et al (2010) Gd(III)-nanodiamond conjugates for MRI contrast enhancement. Nano Lett 10:484–489. doi: 10.1021/nl903264h CrossRefGoogle Scholar
  43. Mermoux M, Crisci A, Petit T, Girard HA, Arnault JC (2014) Surface modifications of detonation nanodiamonds probed by multiwavelength raman spectroscopy. J Phys Chem C 118:23415–23425. doi: 10.1021/jp507377z CrossRefGoogle Scholar
  44. Miyazaki T et al (2005) Size effect on the ordering of L10 FePt nanoparticles. Phys Rev B 72:144419CrossRefGoogle Scholar
  45. Mochalin VN, Shenderova O, Ho D, Gogotsi Y (2011) The properties and applications of nanodiamonds. Nat Nanotechnol 7:11–23. doi: 10.1038/nnano.2011.209 CrossRefGoogle Scholar
  46. Mørup S (1983) Magnetic hyperfine splitting in Mössbauer spectra of microcrystals. J Magn Magn Mater 37:39CrossRefGoogle Scholar
  47. Mørup S (1990) Mössbauer effect in small particles. Hyperfine Interact 60:959CrossRefGoogle Scholar
  48. Mørup S, Hansen M (2007) Superparamagnetic Particles. In: Kronmüller H, Parkin S (eds) Handbook of magnetism and advanced magnetic materials, novel materials. Wiley, ChichesterGoogle Scholar
  49. Nekhaev AI, Bagrii EI, Maximov AL (2011) Petroleum nanodiamonds: new in diamondoid naphthenes. Pet Chem 51:86–95. doi: 10.1134/S0965544111020095 CrossRefGoogle Scholar
  50. Paci JT, Man HB, Saha B, Ho D, Schatz GC (2013) Understanding the surfaces of nanodiamonds. J Phys Chem C 117:17256–17267. doi: 10.1021/jp404311a CrossRefGoogle Scholar
  51. Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D 36:R167–R181CrossRefGoogle Scholar
  52. Papagiannouli I, Bourlinos AB, Bakandritsos A, Couris S (2014) Nonlinear optical properties of colloidal carbon nanoparticles: nanodiamonds and carbon dots. RSC Adv 4:40152–40160. doi: 10.1039/c4ra04714a CrossRefGoogle Scholar
  53. Ram MK, Gomez H, Alvi F, Stefanakos E, Goswami Y, Kumar A (2011) Novel nanohybrid structured regioregular polyhexylthiophene blend films for photoelectrochemical energy applications. J Phys Chem C 115:21987–21995. doi: 10.1021/jp205297n CrossRefGoogle Scholar
  54. Raty JY, Galli G, Bostedt C, Van Buuren TW, Terminello LJ (2003) Quantum confinement and fullerenelike surface reconstructions in nanodiamonds. Physical Review Letters 90:037401/037401–037401/037404CrossRefGoogle Scholar
  55. Rong CB et al (2006) Size-dependent chemical and magnetic ordering in L10-FePt nanoparticles. Adv Mater 18:2984–2988. doi: 10.1002/adma.200601904 CrossRefGoogle Scholar
  56. Shenderova OA, Gruen DM (2012) Ultrananocrystalline diamond: synthesis, properties and applications, 2nd edn. Elsevier, OxfordGoogle Scholar
  57. Shiryaev AA, Fisenko AV, Vlasov II, Semjonova LF, Nagel P, Schuppler S (2011) Spectroscopic study of impurities and associated defects in nanodiamonds from Efremovka (CV3) and Orgueil (CI) meteorites. Geochim Cosmochim Acta 75:3155–3165. doi: 10.1016/j.gca.2011.03.004 CrossRefGoogle Scholar
  58. Spada FE, Parker FT, Platt CL, Howard JK (2003) X-ray diffraction and Mössbauer studies of structural changes and L10 ordering kinetics during annealing of polycrystalline Fe51Pt49 thin films. J Appl Phys 94:5123–5134. doi: 10.1063/1.1606522 CrossRefGoogle Scholar
  59. Su Z, Zhou W, Zhang Y (2011) New insight into the soot nanoparticles in a candle flame. Chem Commun 47:4700–4702. doi: 10.1039/c0cc05785a CrossRefGoogle Scholar
  60. Subramanian K, Kang WP, Davidson JL, Choi BK, Howell M (2006) Nanodiamond lateral comb array field emission diode for high current applications. Diam Relat Mater 15:1994–1997. doi: 10.1016/j.diamond.2006.09.016 CrossRefGoogle Scholar
  61. Sun S (2006) Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Adv Mater 18:393–403. doi: 10.1002/adma.200501464 CrossRefGoogle Scholar
  62. Sundar LS, Singh MK, Ramana EV, Singh B, Grácio J, Sousa ACM (2014) Enhanced Thermal Conductivity and Viscosity of Nanodiamond-Nickel Nanocomposite Nanofluids. Sci Rep 4:4039. doi: 10.1038/srep04039 CrossRefGoogle Scholar
  63. Taha-Tijerina JJ, Narayanan TN, Tiwary CS, Lozano K, Chipara M, Ajayan PM (2014) Nanodiamond-Based Thermal Fluids. ACS Appl Mater Interfaces 6:4778–4785. doi: 10.1021/am405575t CrossRefGoogle Scholar
  64. Takahashi YK, Koyama T, Ohnuma M, Ohkubo T, Mono K (2004) Size dependence of ordering in FePt nanoparticles. J Appl Phys 95:2690–2696. doi: 10.1063/1.1643187 CrossRefGoogle Scholar
  65. Thanh NTK (2012) Magnetic nanoparticles: from fabrication to clinical applications. CRC Press, Boca RatonCrossRefGoogle Scholar
  66. Tsoufis T et al (2008) Novel nanohybrids derived from the attachment of FePt nanoparticles on carbon nanotubes. J Nanosci Nanotechnol 8:5942–5951CrossRefGoogle Scholar
  67. Tsoufis T, Douvalis AP, Lekka CE, Trikalitis PN, Bakas T, Gournis D (2013) Controlled preparation of carbon nanotube–iron oxide nanoparticle hybrid materials by a modified wet impregnation method. J Nanopart Res 15:1924–1927CrossRefGoogle Scholar
  68. Vargas JM, Zysler RD, Socolovsky LM, Knobel M, Zanchet D (2007) Size dependence on the ordering process in colloidal FePt nanoparticles. J Appl Phys 101:023903. doi: 10.1063/1.2409620 CrossRefGoogle Scholar
  69. Vul’ A, Shenderova O (2013) Detonation Nanodiamonds: Science and Applications. CRC Press, Boca RatonGoogle Scholar
  70. Wang HL, Huang Y, Zhang Y, Hadjipanayis GC, Weller D, Simopoulos A (2007) Effects of annealing on the magnetic and structural properties of FePt nanoparticles prepared by chemical synthesis. J Magn Magn Mater 310:22–27CrossRefGoogle Scholar
  71. Wang Y, Gao L, Sun J, Liu Y (2009) Synthesis and characterization of FePt nanoparticle/single walled carbon nanotube composites. Mater Sci Forum 620–622:505–508. doi: 10.4028/ CrossRefGoogle Scholar
  72. Wang Y, Jaiswal M, Lin M, Saha S, Özyilmaz B, Loh KP (2012) Electronic properties of nanodiamond decorated graphene. ACS Nano 6:1018–1025. doi: 10.1021/nn204362p CrossRefGoogle Scholar
  73. Wang DH, Fillery SP, Durstock MF, Dai LM, Vaia RA, Tan LS (2013) Nanodiamond/polyimide high temperature dielectric films for energy storage applications. Adv Mater Res 785–786:410–416. doi: 10.4028/ Google Scholar
  74. Williams OA (2011) Nanocrystalline diamond. Diam Relat Mater 20:621–640. doi: 10.1016/j.diamond.2011.02.015 CrossRefGoogle Scholar
  75. Williams O (2014) Nanodiamond. RSC Nanoscience & Nanotechnology, vol 31. Royal Society of Chemistry, CambridgeGoogle Scholar
  76. Yang B, Asta M, Mryasov ON, Klemmer TJ, Chantrell RW (2005) Equilibrium Monte Carlo simulations of A1–L10 ordering in FePt nanoparticles. Scr Mater 53:417–422CrossRefGoogle Scholar
  77. Yang B, Asta M, Mryasov ON, Klemmer TJ, Chantrell RW (2006) The nature of A1–L10 ordering transitions in alloy nanoparticles: a Monte Carlo study. Acta Mater 54:4201–4211CrossRefGoogle Scholar
  78. Zeng H, Li J, Liu JP, Wang ZL, Sun S (2002) Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature 420:395–398. doi: 10.1038/nature01208 CrossRefGoogle Scholar
  79. Zhang YJ et al (2011) A novel approach to the synthesis of CoPt magnetic nanoparticles. J Phys D 44:295003. doi: 10.1088/0022-3727/44/29/295003 CrossRefGoogle Scholar
  80. Zhao L et al (2014) Platinum on nanodiamond: a promising prodrug conjugated with stealth polyglycerol, targeting peptide and acid-responsive antitumor drug. Adv Funct Mater 24:5348–5357. doi: 10.1002/adfm.201304298 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • A. P. Douvalis
    • 1
  • A. B. Bourlinos
    • 1
  • J. Tucek
    • 2
  • K. Čépe
    • 2
  • T. Bakas
    • 1
  • R. Zboril
    • 2
  1. 1.Physics DepartmentUniversity of IoanninaIoanninaGreece
  2. 2.Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of SciencePalacký University OlomoucOlomoucCzech Republic

Personalised recommendations