Advertisement

Redistribution of charged aluminum nanoparticles on oil droplets in water in response to applied electrical field

  • Mengqi Li
  • Dongqing LiEmail author
Research Paper

Abstract

Janus droplets with two opposite faces of different physical or chemical properties have great potentials in many fields. This paper reports a new method for making Janus droplets by covering one side of the droplet with charged nanoparticles in an externally applied DC electric field. In this paper, aluminum oxide nanoparticles on micro-sized and macro-sized oil droplets were studied. In order to control the surface area covered by the nanoparticles on the oil droplets, the effects of the concentration of nanoparticle suspension, the droplet size as well as the strength of electric field on the final accumulation area of the nanoparticles are studied.

Graphical abstract

Keywords

Janus droplet Charged nanoparticles Electrical field Particle redistribution Oil droplet in water 

Notes

Acknowledgments

The authors thank the Natural Sciences and Engineering Research Council (NSERC) of Canada for the financial support given to D. Li through a research grant.

References

  1. Ahn S, Kim DW, Kim YW, Yoo JY (2010) Generation of Janus droplets for enhanced mixing in microfluidics. Int J Precis Eng Manuf 11:799–802. doi: 10.1007/s12541-010-0095-z CrossRefGoogle Scholar
  2. Amah E, Shah K, Fischer I, Singh P (2016) Electrohydrodynamic manipulation of particles adsorbed on the surface of a drop. Soft Matter 12:1663–1673. doi: 10.1039/C5SM02195B CrossRefGoogle Scholar
  3. Bickel T, Majee A, Würger A (2013) Flow pattern in the vicinity of self-propelling hot Janus particles. Phys Rev E 88:012301. doi: 10.1103/PhysRevE.88.012301 CrossRefGoogle Scholar
  4. Binks BP, Fletcher PDI (2001) Particles adsorbed at the oil-water interface: a theoretical comparison between spheres of uniform wettability and “Janus” particles. Langmuir 17:4708–4710. doi: 10.1021/la0103315 CrossRefGoogle Scholar
  5. Bormashenko E, Bormashenko Y, Pogreb R, Gendelman O (2011) Janus droplets: liquid marbles coated with dielectric/semiconductor particles. Langmuir 27:7–10. doi: 10.1021/la103653p CrossRefGoogle Scholar
  6. Chera L, Palcevskis E, Berzins M et al (2007) Dispersion of nanosized ceramic powders in aqueous suspensions. J Phys Conf Ser 93:012010. doi: 10.1088/1742-6596/93/1/012010 CrossRefGoogle Scholar
  7. Chevalier Y, Bolzinger MA (2013) Emulsions stabilized with solid nanoparticles: pickering emulsions. Colloids Surfaces A Physicochem Eng Asp 439:23–34. doi: 10.1016/j.colsurfa.2013.02.054 CrossRefGoogle Scholar
  8. Crowley JM, Sheridon NK, Romano L (2002) Dipole moments of gyricon balls. J Electrostat 55:247–259. doi: 10.1016/S0304-3886(01)00208-X CrossRefGoogle Scholar
  9. Daghighi Y, Li D (2011) Micro-valve using induced-charge electrokinetic motion of Janus particle. Lab Chip 11:2929–2940. doi: 10.1039/c1lc20229d CrossRefGoogle Scholar
  10. Daghighi Y, Gao Y, Li D (2011) 3D numerical study of induced-charge electrokinetic motion of heterogeneous particle in a microchannel. Electrochim Acta 56:4254–4262. doi: 10.1016/j.electacta.2011.01.083 CrossRefGoogle Scholar
  11. Dommersnes P, Rozynek Z, Mikkelsen A et al (2013) Active structuring of colloidal armour on liquid drops. Nat Commun 4:2066. doi: 10.1038/ncomms3066 CrossRefGoogle Scholar
  12. Edel JB, Kornyshev AA, Urbakh M (2013) Self-assembly of nanoparticle arrays for use as mirrors, sensors, and antennas. ACS Nano 7:9526–9532. doi: 10.1021/nn405712r CrossRefGoogle Scholar
  13. Fattah Z, Loget G, Lapeyre V et al (2011) Straightforward single-step generation of microswimmers by bipolar electrochemistry. Electrochim Acta 56:10562–10566. doi: 10.1016/j.electacta.2011.01.048 CrossRefGoogle Scholar
  14. Friberg SE, Kovach I, Koetz J (2013) Equilibrium topology and partial inversion of Janus drops: a numerical analysis. Chemphyschem 14:3772–3776. doi: 10.1002/cphc.201300635 CrossRefGoogle Scholar
  15. Ge L, Shao W, Lu S, Guo R (2014) Droplet topology control of Janus emulsion prepared in one-step high energy mixing. Soft Matter 10:4498–4505. doi: 10.1039/c4sm00456f CrossRefGoogle Scholar
  16. Glaser N, Adams DJ, Böker A, Krausch G (2006) Janus particles at liquid–liquid interfaces. Langmuir 22:5227–5229. doi: 10.1021/la060693i CrossRefGoogle Scholar
  17. Guzowski J, Korczyk PM, Jakiela S, Garstecki P (2012) The structure and stability of multiple micro-droplets. Soft Matter 8:7269–7278. doi: 10.1039/c2sm25838b CrossRefGoogle Scholar
  18. Hasinovic H, Friberg SE (2011) One-step inversion process to a Janus emulsion with two mutually insoluble oils. Langmuir 27:6584–6588. doi: 10.1021/la105118h CrossRefGoogle Scholar
  19. Hasinovic H, Friberg SE, Rong G (2011) A one-step process to a Janus emulsion. J Colloid Interface Sci 354:424–426. doi: 10.1016/j.jcis.2010.10.004 CrossRefGoogle Scholar
  20. Hossan MR, Gopmandal PP, Dillon R, Dutta P (2015) Bipolar Janus particle assembly in microdevice. Electrophoresis 36:722–730. doi: 10.1002/elps.201400423 CrossRefGoogle Scholar
  21. Jeong J, Gross A, Wei WS et al (2015) Liquid crystal Janus emulsion droplets: preparation, tumbling, and swimming. Soft Matter 11:6747–6754. doi: 10.1039/C5SM01053E CrossRefGoogle Scholar
  22. Jiang HR, Yoshinaga N, Sano M (2010) Active motion of a Janus particle by self-thermophoresis in a defocused laser beam. Phys Rev Lett 105:268302. doi: 10.1103/PhysRevLett.105.268302 CrossRefGoogle Scholar
  23. Levine S, Bowen BD, Partridge SJ (1989) Stabilization of emulsions by fine particles I. Partitioning of particles between continuous phase and oil/water interface. Colloids Surf 38:325–343. doi: 10.1016/0166-6622(89)80271-9 CrossRefGoogle Scholar
  24. Li YJ, Huang WJ, Sun SG (2006) A universal approach for the self-assembly of hydrophilic nanoparticles into ordered monolayer films at a toluene/water interface. Angew Chemie Int Ed Engl 45:2537–2539. doi: 10.1002/anie.200504595 CrossRefGoogle Scholar
  25. Loget G, Lapeyre V, Garrigue P et al (2011) Versatile procedure for synthesis of janus-type carbon tubes. Chem Mater 23:2595–2599. doi: 10.1021/cm2001573 CrossRefGoogle Scholar
  26. Loget G, Roche J, Gianessi E et al (2012a) Indirect bipolar electrodeposition. J Am Chem Soc 134:20033–20036. doi: 10.1021/ja310400f CrossRefGoogle Scholar
  27. Loget G, Roche J, Kuhn A (2012b) True bulk synthesis of Janus objects by bipolar electrochemistry. Adv Mater 24:5111–5116. doi: 10.1002/adma.201201623 CrossRefGoogle Scholar
  28. Lone S, Cheong IW (2014) Fabrication of polymeric Janus particles by droplet microfluidics. RSC Adv 4:13322–13333. doi: 10.1039/c4ra00158c CrossRefGoogle Scholar
  29. Luo M, Olivier GK, Frechette J (2012) Electrostatic interactions to modulate the reflective assembly of nanoparticles at the oil–water interface. Soft Matter 8:11923–11932. doi: 10.1039/c2sm26890f CrossRefGoogle Scholar
  30. Nie Z, Li W, Seo M et al (2006) Janus and ternary particles generated by microfluidic synthesis: design, synthesis, and self-assembly. J Am Chem Soc 128:9408–9412. doi: 10.1021/ja060882n CrossRefGoogle Scholar
  31. Nisisako T, Torii T (2007) Formation of biphasic Janus droplets in a microfabricated channel for the synthesis of shape-controlled polymer microparticles. Adv Mater 19:1489–1493. doi: 10.1002/adma.200700272 CrossRefGoogle Scholar
  32. Nisisako T, Torii T, Takahashi T, Takizawa Y (2006) Synthesis of monodisperse bicolored Janus particles with electrical anisotropy using a microfluidic co-flow system. Adv Mater 18:1152–1156. doi: 10.1002/adma.200502431 CrossRefGoogle Scholar
  33. Nonomura Y, Komura S, Tsujii K (2004) Adsorption of disk-shaped Janus beads at liquid–liquid interfaces. Langmuir 20:11821–11823. doi: 10.1021/la0480540 CrossRefGoogle Scholar
  34. Ongaro M, Gambirasi A, Favaro M et al (2014) Asymmetrical modification of carbon microfibers by bipolar electrochemistry in acetonitrile. Electrochim Acta 116:421–428. doi: 10.1016/j.electacta.2013.11.066 CrossRefGoogle Scholar
  35. Ouriemi M, Vlahovska PM (2015) Electrohydrodynamic deformation and rotation of a particle-coated drop. Langmuir 31:6298–6305. doi: 10.1021/acs.langmuir.5b00774 CrossRefGoogle Scholar
  36. Pannacci N, Bruus H, Bartolo D et al (2008) Equilibrium and nonequilibrium states in microfluidic double emulsions. Phys Rev Lett 101:164502. doi: 10.1103/PhysRevLett.101.164502 CrossRefGoogle Scholar
  37. Reincke F, Hickey SG, Kegel WK, Vanmaekelbergh D (2004) Spontaneous assembly of a monolayer of charged gold nanocrystals at the water/oil interface. Angew Chemie Int Ed Engl 43:458–462. doi: 10.1002/anie.200352339 CrossRefGoogle Scholar
  38. Roh KH, Martin DC, Lahann J (2005) Biphasic Janus particles with nanoscale anisotropy. Nat Mater 4:759–763. doi: 10.1038/nmat1486 CrossRefGoogle Scholar
  39. Rozynek Z, Dommersnes P, Mikkelsen A et al (2014a) Electrohydrodynamic controlled assembly and fracturing of thin colloidal particle films confined at drop interfaces. Eur Phys J Spec Top 223:1859–1867. doi: 10.1140/epjst/e2014-02231-x CrossRefGoogle Scholar
  40. Rozynek Z, Mikkelsen A, Dommersnes P, Fossum JO (2014b) Electroformation of Janus and patchy capsules. Nat Commun 5:3945. doi: 10.1038/ncomms4945 CrossRefGoogle Scholar
  41. Schaming D, Hojeij M, Younan N et al (2011) Photocurrents at polarized liquid|liquid interfaces enhanced by a gold nanoparticle film. Phys Chem Chem Phys 13:17704–17711. doi: 10.1039/c1cp22072a CrossRefGoogle Scholar
  42. Shardt O, Derksen JJ, Mitra SK (2014) Simulations of Janus droplets at equilibrium and in shear. Phys Fluids 26:012104. doi: 10.1063/1.4861717 CrossRefGoogle Scholar
  43. Shklyaev S (2015) Janus droplet as a catalytic micromotor. EPL (Europhysics Letters) 110:54002CrossRefGoogle Scholar
  44. Sopha H, Roche J, Svancara I, Kuhn A (2014) Wireless electrosampling of heavy metals for stripping analysis with bismuth-based janus particles. Anal Chem 86:10515–10519. doi: 10.1021/ac5033897 CrossRefGoogle Scholar
  45. Torza S, Mason SG (1970) Three-phase interactions in shear and electrical fields. J Colloid Interface Sci 33:67–83. doi: 10.1016/0021-9797(70)90073-1 CrossRefGoogle Scholar
  46. Utada AS, Lorenceau E, Link DR et al (2005) Monodisperse double emulsions generated from a microcapillary device. Science 308:537–541. doi: 10.1126/science.1109164 CrossRefGoogle Scholar
  47. Walther A, Müller AH (2008) Janus particles. Soft Matter 4:663–668. doi: 10.1039/b718131k CrossRefGoogle Scholar
  48. Wang Y, Zhang C, Tang C et al (2011) Emulsion interfacial synthesis of asymmetric Janus particles. Macromolecules 44:3787–3794. doi: 10.1021/ma102945t CrossRefGoogle Scholar
  49. Wurm F, Kilbinger AFM (2009) Polymeric Janus particles. Angew Chemie Int Ed 48:8412–8421. doi: 10.1002/anie.200901735 CrossRefGoogle Scholar
  50. Xu J, Ma A, Liu T et al (2013) Janus-like pickering emulsions and their controllable coalescence. Chem Commun (Camb) 49:10871–10873. doi: 10.1039/c3cc46738d CrossRefGoogle Scholar
  51. Yogev D, Efrima S (1991) Chemical aspects of silver metal liquid-like films. J Colloid Interface Sci 147:88–97. doi: 10.1016/0021-9797(91)90137-W CrossRefGoogle Scholar
  52. Yoon J, Lee KJ, Lahann J (2011) Multifunctional polymer particles with distinct compartments. J Mater Chem 21:8502–8510. doi: 10.1039/c1jm10673b CrossRefGoogle Scholar
  53. Zarzar LD, Sresht V, Sletten EM et al (2015) Dynamically reconfigurable complex emulsions via tunable interfacial tensions. Nature 518:520–524. doi: 10.1038/nature14168 CrossRefGoogle Scholar
  54. Zhang F, Li D (2013) Induced-charge electroosmotic flow around dielectric particles in uniform electric field. J Colloid Interface Sci 410:102–110. doi: 10.1016/j.jcis.2013.08.017 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Mechanical and Mechatronics EngineeringUniversity of WaterlooWaterlooCanada
  2. 2.WaterlooCanada

Personalised recommendations